Files
addr2line
adler
aho_corasick
arrayvec
atty
backtrace
bitflags
camino
cargo_metadata
cargo_nextest
cargo_platform
cfg_expr
cfg_if
chrono
clap
clap_derive
color_eyre
config
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
ctrlc
datatest_stable
debug_ignore
duct
either
enable_ansi_support
env_logger
eyre
fixedbitset
gimli
guppy
guppy_workspace_hack
hashbrown
humantime
humantime_serde
indent_write
indenter
indexmap
is_ci
itertools
itoa
lazy_static
lexical_core
libc
log
memchr
memoffset
miniz_oxide
nested
nextest_metadata
nextest_runner
nix
nom
num_cpus
num_integer
num_traits
object
once_cell
os_pipe
os_str_bytes
owo_colors
pathdiff
petgraph
proc_macro2
proc_macro_error
proc_macro_error_attr
quick_junit
quick_xml
quote
rayon
rayon_core
regex
regex_syntax
rustc_demangle
ryu
same_file
scopeguard
semver
serde
serde_derive
serde_json
shared_child
shellwords
smallvec
static_assertions
strip_ansi_escapes
strsim
structopt
structopt_derive
supports_color
syn
target_lexicon
target_spec
termcolor
textwrap
time
toml
twox_hash
unicode_xid
utf8parse
vte
vte_generate_state_changes
walkdir
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
//! Adler-32 checksum implementation.
//!
//! This implementation features:
//!
//! - Permissively licensed (0BSD) clean-room implementation.
//! - Zero dependencies.
//! - Zero `unsafe`.
//! - Decent performance (3-4 GB/s).
//! - `#![no_std]` support (with `default-features = false`).

#![doc(html_root_url = "https://docs.rs/adler/1.0.2")]
// Deny a few warnings in doctests, since rustdoc `allow`s many warnings by default
#![doc(test(attr(deny(unused_imports, unused_must_use))))]
#![cfg_attr(docsrs, feature(doc_cfg))]
#![warn(missing_debug_implementations)]
#![forbid(unsafe_code)]
#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
extern crate core as std;

mod algo;

use std::hash::Hasher;

#[cfg(feature = "std")]
use std::io::{self, BufRead};

/// Adler-32 checksum calculator.
///
/// An instance of this type is equivalent to an Adler-32 checksum: It can be created in the default
/// state via [`new`] (or the provided `Default` impl), or from a precalculated checksum via
/// [`from_checksum`], and the currently stored checksum can be fetched via [`checksum`].
///
/// This type also implements `Hasher`, which makes it easy to calculate Adler-32 checksums of any
/// type that implements or derives `Hash`. This also allows using Adler-32 in a `HashMap`, although
/// that is not recommended (while every checksum is a hash function, they are not necessarily a
/// good one).
///
/// # Examples
///
/// Basic, piecewise checksum calculation:
///
/// ```
/// use adler::Adler32;
///
/// let mut adler = Adler32::new();
///
/// adler.write_slice(&[0, 1, 2]);
/// adler.write_slice(&[3, 4, 5]);
///
/// assert_eq!(adler.checksum(), 0x00290010);
/// ```
///
/// Using `Hash` to process structures:
///
/// ```
/// use std::hash::Hash;
/// use adler::Adler32;
///
/// #[derive(Hash)]
/// struct Data {
///     byte: u8,
///     word: u16,
///     big: u64,
/// }
///
/// let mut adler = Adler32::new();
///
/// let data = Data { byte: 0x1F, word: 0xABCD, big: !0 };
/// data.hash(&mut adler);
///
/// // hash value depends on architecture endianness
/// if cfg!(target_endian = "little") {
///     assert_eq!(adler.checksum(), 0x33410990);
/// }
/// if cfg!(target_endian = "big") {
///     assert_eq!(adler.checksum(), 0x331F0990);
/// }
///
/// ```
///
/// [`new`]: #method.new
/// [`from_checksum`]: #method.from_checksum
/// [`checksum`]: #method.checksum
#[derive(Debug, Copy, Clone)]
pub struct Adler32 {
    a: u16,
    b: u16,
}

impl Adler32 {
    /// Creates a new Adler-32 instance with default state.
    #[inline]
    pub fn new() -> Self {
        Self::default()
    }

    /// Creates an `Adler32` instance from a precomputed Adler-32 checksum.
    ///
    /// This allows resuming checksum calculation without having to keep the `Adler32` instance
    /// around.
    ///
    /// # Example
    ///
    /// ```
    /// # use adler::Adler32;
    /// let parts = [
    ///     "rust",
    ///     "acean",
    /// ];
    /// let whole = adler::adler32_slice(b"rustacean");
    ///
    /// let mut sum = Adler32::new();
    /// sum.write_slice(parts[0].as_bytes());
    /// let partial = sum.checksum();
    ///
    /// // ...later
    ///
    /// let mut sum = Adler32::from_checksum(partial);
    /// sum.write_slice(parts[1].as_bytes());
    /// assert_eq!(sum.checksum(), whole);
    /// ```
    #[inline]
    pub fn from_checksum(sum: u32) -> Self {
        Adler32 {
            a: sum as u16,
            b: (sum >> 16) as u16,
        }
    }

    /// Returns the calculated checksum at this point in time.
    #[inline]
    pub fn checksum(&self) -> u32 {
        (u32::from(self.b) << 16) | u32::from(self.a)
    }

    /// Adds `bytes` to the checksum calculation.
    ///
    /// If efficiency matters, this should be called with Byte slices that contain at least a few
    /// thousand Bytes.
    pub fn write_slice(&mut self, bytes: &[u8]) {
        self.compute(bytes);
    }
}

impl Default for Adler32 {
    #[inline]
    fn default() -> Self {
        Adler32 { a: 1, b: 0 }
    }
}

impl Hasher for Adler32 {
    #[inline]
    fn finish(&self) -> u64 {
        u64::from(self.checksum())
    }

    fn write(&mut self, bytes: &[u8]) {
        self.write_slice(bytes);
    }
}

/// Calculates the Adler-32 checksum of a byte slice.
///
/// This is a convenience function around the [`Adler32`] type.
///
/// [`Adler32`]: struct.Adler32.html
pub fn adler32_slice(data: &[u8]) -> u32 {
    let mut h = Adler32::new();
    h.write_slice(data);
    h.checksum()
}

/// Calculates the Adler-32 checksum of a `BufRead`'s contents.
///
/// The passed `BufRead` implementor will be read until it reaches EOF (or until it reports an
/// error).
///
/// If you only have a `Read` implementor, you can wrap it in `std::io::BufReader` before calling
/// this function.
///
/// # Errors
///
/// Any error returned by the reader are bubbled up by this function.
///
/// # Examples
///
/// ```no_run
/// # fn run() -> Result<(), Box<dyn std::error::Error>> {
/// use adler::adler32;
///
/// use std::fs::File;
/// use std::io::BufReader;
///
/// let file = File::open("input.txt")?;
/// let mut file = BufReader::new(file);
///
/// adler32(&mut file)?;
/// # Ok(()) }
/// # fn main() { run().unwrap() }
/// ```
#[cfg(feature = "std")]
#[cfg_attr(docsrs, doc(cfg(feature = "std")))]
pub fn adler32<R: BufRead>(mut reader: R) -> io::Result<u32> {
    let mut h = Adler32::new();
    loop {
        let len = {
            let buf = reader.fill_buf()?;
            if buf.is_empty() {
                return Ok(h.checksum());
            }

            h.write_slice(buf);
            buf.len()
        };
        reader.consume(len);
    }
}

#[cfg(test)]
mod tests {
    use super::*;

    #[test]
    fn zeroes() {
        assert_eq!(adler32_slice(&[]), 1);
        assert_eq!(adler32_slice(&[0]), 1 | 1 << 16);
        assert_eq!(adler32_slice(&[0, 0]), 1 | 2 << 16);
        assert_eq!(adler32_slice(&[0; 100]), 0x00640001);
        assert_eq!(adler32_slice(&[0; 1024]), 0x04000001);
        assert_eq!(adler32_slice(&[0; 1024 * 1024]), 0x00f00001);
    }

    #[test]
    fn ones() {
        assert_eq!(adler32_slice(&[0xff; 1024]), 0x79a6fc2e);
        assert_eq!(adler32_slice(&[0xff; 1024 * 1024]), 0x8e88ef11);
    }

    #[test]
    fn mixed() {
        assert_eq!(adler32_slice(&[1]), 2 | 2 << 16);
        assert_eq!(adler32_slice(&[40]), 41 | 41 << 16);

        assert_eq!(adler32_slice(&[0xA5; 1024 * 1024]), 0xd5009ab1);
    }

    /// Example calculation from https://en.wikipedia.org/wiki/Adler-32.
    #[test]
    fn wiki() {
        assert_eq!(adler32_slice(b"Wikipedia"), 0x11E60398);
    }

    #[test]
    fn resume() {
        let mut adler = Adler32::new();
        adler.write_slice(&[0xff; 1024]);
        let partial = adler.checksum();
        assert_eq!(partial, 0x79a6fc2e); // from above
        adler.write_slice(&[0xff; 1024 * 1024 - 1024]);
        assert_eq!(adler.checksum(), 0x8e88ef11); // from above

        // Make sure that we can resume computing from the partial checksum via `from_checksum`.
        let mut adler = Adler32::from_checksum(partial);
        adler.write_slice(&[0xff; 1024 * 1024 - 1024]);
        assert_eq!(adler.checksum(), 0x8e88ef11); // from above
    }

    #[cfg(feature = "std")]
    #[test]
    fn bufread() {
        use std::io::BufReader;
        fn test(data: &[u8], checksum: u32) {
            // `BufReader` uses an 8 KB buffer, so this will test buffer refilling.
            let mut buf = BufReader::new(data);
            let real_sum = adler32(&mut buf).unwrap();
            assert_eq!(checksum, real_sum);
        }

        test(&[], 1);
        test(&[0; 1024], 0x04000001);
        test(&[0; 1024 * 1024], 0x00f00001);
        test(&[0xA5; 1024 * 1024], 0xd5009ab1);
    }
}