1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

/// This is a copy of `futures::stream::futures_ordered` from `futures 0.3.6`, except that it uses
/// `FuturesUnorderedX` which provides concurrency control. So we can manage more futures without
/// too many activated at the same time.
use crate::utils::stream::futures_unordered_x::FuturesUnorderedX;
use futures::{
    ready,
    stream::{FusedStream, StreamExt},
    task::{Context, Poll},
    Future, Stream,
};
use pin_project::pin_project;
use std::{
    cmp::Ordering,
    collections::{binary_heap::PeekMut, BinaryHeap},
    pin::Pin,
};

#[pin_project]
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
struct OrderWrapper<T> {
    #[pin]
    data: T, // A future or a future's output
    index: usize,
}

impl<T> PartialEq for OrderWrapper<T> {
    fn eq(&self, other: &Self) -> bool {
        self.index == other.index
    }
}

impl<T> Eq for OrderWrapper<T> {}

impl<T> PartialOrd for OrderWrapper<T> {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl<T> Ord for OrderWrapper<T> {
    fn cmp(&self, other: &Self) -> Ordering {
        // BinaryHeap is a max heap, so compare backwards here.
        other.index.cmp(&self.index)
    }
}

impl<T> Future for OrderWrapper<T>
where
    T: Future,
{
    type Output = OrderWrapper<T::Output>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        let index = self.index;
        self.project().data.poll(cx).map(|output| OrderWrapper {
            data: output,
            index,
        })
    }
}

#[must_use = "streams do nothing unless polled"]
pub struct FuturesOrderedX<T: Future> {
    in_progress_queue: FuturesUnorderedX<OrderWrapper<T>>,
    queued_outputs: BinaryHeap<OrderWrapper<T::Output>>,
    next_incoming_index: usize,
    next_outgoing_index: usize,
}

impl<T: Future> Unpin for FuturesOrderedX<T> {}

impl<Fut: Future> FuturesOrderedX<Fut> {
    /// Constructs a new, empty `FuturesOrdered`
    ///
    /// The returned `FuturesOrdered` does not contain any futures and, in this
    /// state, `FuturesOrdered::poll_next` will return `Poll::Ready(None)`.
    pub fn new(max_in_progress: usize) -> FuturesOrderedX<Fut> {
        FuturesOrderedX {
            in_progress_queue: FuturesUnorderedX::new(max_in_progress),
            queued_outputs: BinaryHeap::new(),
            next_incoming_index: 0,
            next_outgoing_index: 0,
        }
    }

    /// Returns the number of futures contained in the queue.
    ///
    /// This represents the total number of in-flight futures, both
    /// those currently processing and those that have completed but
    /// which are waiting for earlier futures to complete.
    pub fn len(&self) -> usize {
        self.in_progress_queue.len() + self.queued_outputs.len()
    }

    /// Returns `true` if the queue contains no futures
    #[allow(dead_code)]
    pub fn is_empty(&self) -> bool {
        self.in_progress_queue.is_empty() && self.queued_outputs.is_empty()
    }

    /// Push a future into the queue.
    ///
    /// This function submits the given future to the internal set for managing.
    /// This function will not call `poll` on the submitted future. The caller
    /// must ensure that `FuturesOrdered::poll` is called in order to receive
    /// task notifications.
    pub fn push(&mut self, future: Fut) {
        let wrapped = OrderWrapper {
            data: future,
            index: self.next_incoming_index,
        };
        self.next_incoming_index += 1;
        self.in_progress_queue.push(wrapped);
    }
}

impl<Fut: Future> Stream for FuturesOrderedX<Fut> {
    type Item = Fut::Output;

    fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        let this = &mut *self;

        // Check to see if we've already received the next value
        if let Some(next_output) = this.queued_outputs.peek_mut() {
            if next_output.index == this.next_outgoing_index {
                this.next_outgoing_index += 1;
                return Poll::Ready(Some(PeekMut::pop(next_output).data));
            }
        }

        loop {
            match ready!(this.in_progress_queue.poll_next_unpin(cx)) {
                Some(output) => {
                    if output.index == this.next_outgoing_index {
                        this.next_outgoing_index += 1;
                        return Poll::Ready(Some(output.data));
                    } else {
                        this.queued_outputs.push(output)
                    }
                }
                None => return Poll::Ready(None),
            }
        }
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let len = self.len();
        (len, Some(len))
    }
}

impl<Fut: Future> std::fmt::Debug for FuturesOrderedX<Fut> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "FuturesOrderedX {{ ... }}")
    }
}

impl<Fut: Future> FusedStream for FuturesOrderedX<Fut> {
    fn is_terminated(&self) -> bool {
        self.in_progress_queue.is_terminated() && self.queued_outputs.is_empty()
    }
}

impl<Fut: Future> Extend<Fut> for FuturesOrderedX<Fut> {
    fn extend<I>(&mut self, iter: I)
    where
        I: IntoIterator<Item = Fut>,
    {
        for item in iter.into_iter() {
            self.push(item);
        }
    }
}

#[cfg(test)]
mod tests {
    use super::FuturesOrderedX;
    use futures::StreamExt;
    use proptest::{collection::vec, prelude::*};
    use tokio::{runtime::Runtime, time::Duration};

    proptest! {
        #[test]
        fn test_run(
            sleeps_ms in vec(0u64..10, 0..100),
            max_in_progress in 1usize..100,
        ) {
            let rt = Runtime::new().unwrap();
            rt.block_on(async {
                let num_sleeps = sleeps_ms.len();
                let mut futures = FuturesOrderedX::new(max_in_progress);
                assert!(futures.is_empty());

                futures.extend(sleeps_ms.into_iter().enumerate().map(|(n, sleep_ms)| async move {
                        tokio::time::sleep(Duration::from_millis(sleep_ms)).await;
                        n
                }));
                assert!(num_sleeps > 0 || futures.is_empty());
                assert_eq!(
                    futures.collect::<Vec<_>>().await,
                    (0..num_sleeps).collect::<Vec<_>>()
                );
            });
        }
    }
}