1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
use futures::{
stream::{FusedStream, FuturesUnordered},
task::{Context, Poll},
Future, Stream, StreamExt,
};
use std::{collections::VecDeque, fmt::Debug, pin::Pin};
#[must_use = "streams do nothing unless polled"]
pub struct FuturesUnorderedX<T: Future> {
queued: VecDeque<T>,
in_progress: FuturesUnordered<T>,
queued_outputs: VecDeque<T::Output>,
max_in_progress: usize,
}
impl<T: Future> Unpin for FuturesUnorderedX<T> {}
impl<Fut: Future> FuturesUnorderedX<Fut> {
pub fn new(max_in_progress: usize) -> FuturesUnorderedX<Fut> {
assert!(max_in_progress > 0);
FuturesUnorderedX {
queued: VecDeque::new(),
in_progress: FuturesUnordered::new(),
queued_outputs: VecDeque::new(),
max_in_progress,
}
}
pub fn len(&self) -> usize {
self.queued.len() + self.in_progress.len() + self.queued_outputs.len()
}
pub fn is_empty(&self) -> bool {
self.queued.is_empty() && self.in_progress.is_empty() && self.queued_outputs.is_empty()
}
pub fn push(&mut self, future: Fut) {
if self.in_progress.len() < self.max_in_progress {
self.in_progress.push(future);
} else {
self.queued.push_back(future);
}
}
}
impl<Fut: Future> Stream for FuturesUnorderedX<Fut> {
type Item = Fut::Output;
fn poll_next(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
while let Poll::Ready(Some(output)) = self.in_progress.poll_next_unpin(cx) {
self.queued_outputs.push_back(output);
if let Some(future) = self.queued.pop_front() {
self.in_progress.push(future)
}
}
if let Some(output) = self.queued_outputs.pop_front() {
Poll::Ready(Some(output))
} else if self.in_progress.is_empty() {
Poll::Ready(None)
} else {
Poll::Pending
}
}
fn size_hint(&self) -> (usize, Option<usize>) {
let len = self.len();
(len, Some(len))
}
}
impl<Fut: Future> Debug for FuturesUnorderedX<Fut> {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "FuturesOrderedX {{ ... }}")
}
}
impl<Fut: Future> FusedStream for FuturesUnorderedX<Fut> {
fn is_terminated(&self) -> bool {
self.in_progress.is_terminated() && self.queued_outputs.is_empty()
}
}
impl<Fut: Future> Extend<Fut> for FuturesUnorderedX<Fut> {
fn extend<I>(&mut self, iter: I)
where
I: IntoIterator<Item = Fut>,
{
for item in iter.into_iter() {
self.push(item);
}
}
}
#[cfg(test)]
mod tests {
use super::FuturesUnorderedX;
use futures::StreamExt;
use proptest::{collection::vec, prelude::*};
use std::{
cmp::min,
sync::{
atomic::{AtomicBool, AtomicUsize, Ordering},
Arc,
},
};
use tokio::{runtime::Runtime, time::Duration};
proptest! {
#[test]
fn test_run(
sleeps_ms in vec(0u64..10, 10..100),
max_in_progress in 1usize..100,
) {
let rt = Runtime::new().unwrap();
rt.block_on(async {
let num_sleeps = sleeps_ms.len();
let mut futures = FuturesUnorderedX::new(max_in_progress);
assert!(futures.is_empty());
let n_running = Arc::new(AtomicUsize::new(0));
let seen_max_concurrency = Arc::new(AtomicBool::new(false));
for (n, sleep_ms) in sleeps_ms.into_iter().enumerate() {
let _n_running = n_running.clone();
let _seen_max_concurrency = seen_max_concurrency.clone();
futures.push(async move {
_n_running.fetch_add(1, Ordering::Relaxed);
tokio::time::sleep(Duration::from_millis(sleep_ms)).await;
let r = _n_running.fetch_sub(1, Ordering::Relaxed);
assert!(r > 0 && r <= min(max_in_progress, num_sleeps));
if r == max_in_progress {
_seen_max_concurrency.store(true, Ordering::Relaxed);
}
n
})
}
assert!(num_sleeps > 0 || futures.is_empty());
let mut outputs = futures.collect::<Vec<_>>().await;
if max_in_progress <= num_sleeps {
assert!(seen_max_concurrency.load(Ordering::Relaxed));
}
outputs.sort_unstable();
assert_eq!(outputs, (0..num_sleeps).collect::<Vec<_>>());
});
}
}
}