1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
use crate::{
dataflow_analysis::{DataflowAnalysis, TransferFunctions},
function_target::{FunctionData, FunctionTarget},
function_target_pipeline::{FunctionTargetProcessor, FunctionTargetsHolder},
options::ProverOptions,
stackless_bytecode::{BorrowNode, Bytecode, Operation},
stackless_control_flow_graph::StacklessControlFlowGraph,
};
use move_binary_format::file_format::CodeOffset;
use move_model::{
model::FunctionEnv,
native::{EVENT_EMIT_EVENT, VECTOR_BORROW_MUT},
};
use crate::dataflow_domains::{AbstractDomain, JoinResult};
use std::collections::BTreeSet;
pub struct CleanAndOptimizeProcessor();
impl CleanAndOptimizeProcessor {
pub fn new() -> Box<Self> {
Box::new(Self())
}
}
impl FunctionTargetProcessor for CleanAndOptimizeProcessor {
fn process(
&self,
_targets: &mut FunctionTargetsHolder,
func_env: &FunctionEnv<'_>,
mut data: FunctionData,
) -> FunctionData {
if func_env.is_native() {
return data;
}
let options = ProverOptions::get(func_env.module_env.env);
let instrs = std::mem::take(&mut data.code);
let new_instrs = Optimizer {
options: &*options,
target: &FunctionTarget::new(func_env, &data),
}
.run(instrs);
data.code = new_instrs;
data
}
fn name(&self) -> String {
"clean_and_optimize".to_string()
}
}
#[derive(Debug, Clone, Default, Eq, PartialEq, PartialOrd)]
struct AnalysisState {
unwritten: BTreeSet<BorrowNode>,
}
impl AbstractDomain for AnalysisState {
fn join(&mut self, other: &Self) -> JoinResult {
let n = self.unwritten.len();
self.unwritten.extend(other.unwritten.iter().cloned());
if self.unwritten.len() == n {
JoinResult::Unchanged
} else {
JoinResult::Changed
}
}
}
struct Optimizer<'a> {
options: &'a ProverOptions,
target: &'a FunctionTarget<'a>,
}
impl<'a> TransferFunctions for Optimizer<'a> {
type State = AnalysisState;
const BACKWARD: bool = false;
fn execute(&self, state: &mut AnalysisState, instr: &Bytecode, _offset: CodeOffset) {
use BorrowNode::*;
use Bytecode::*;
use Operation::*;
if let Call(_, _, oper, srcs, _) = instr {
match oper {
WriteRef => {
state.unwritten.insert(Reference(srcs[0]));
}
WriteBack(Reference(dest), ..) => {
if state.unwritten.contains(&Reference(srcs[0])) {
state.unwritten.insert(Reference(*dest));
}
}
Function(mid, fid, _) => {
let callee_env = &self
.target
.global_env()
.get_function_qid(mid.qualified(*fid));
let has_effect = if !self.options.for_interpretation
&& callee_env.is_native_or_intrinsic()
{
let pool = callee_env.symbol_pool();
!matches!(
format!(
"{}::{}",
callee_env.module_env.get_name().display_full(pool),
callee_env.get_name().display(pool)
)
.as_str(),
VECTOR_BORROW_MUT | EVENT_EMIT_EVENT
)
} else {
true
};
if has_effect {
for src in srcs {
if self.target.get_local_type(*src).is_mutable_reference() {
state.unwritten.insert(Reference(*src));
}
}
}
}
_ => {}
}
}
}
}
impl<'a> DataflowAnalysis for Optimizer<'a> {}
impl<'a> Optimizer<'a> {
fn run(&mut self, instrs: Vec<Bytecode>) -> Vec<Bytecode> {
let cfg = StacklessControlFlowGraph::new_forward(&instrs);
let state = self.analyze_function(AnalysisState::default(), &instrs, &cfg);
let data = self.state_per_instruction(state, &instrs, &cfg, |before, _| before.clone());
let mut new_instrs = vec![];
for (code_offset, instr) in instrs.into_iter().enumerate() {
use BorrowNode::*;
use Bytecode::*;
use Operation::*;
let is_unwritten = |code_offset: CodeOffset, node: &BorrowNode| {
if let Some(unwritten) = data.get(&code_offset).map(|d| &d.unwritten) {
unwritten.contains(node)
} else {
true
}
};
if !new_instrs.is_empty() {
match (&new_instrs[new_instrs.len() - 1], &instr) {
(Call(_, _, UnpackRef, srcs1, _), Call(_, _, PackRef, srcs2, _))
if srcs1[0] == srcs2[0] =>
{
new_instrs.pop();
continue;
}
(Call(_, dests, IsParent(..), srcs, _), Branch(_, _, _, tmp))
if dests[0] == *tmp
&& !is_unwritten(code_offset as CodeOffset, &Reference(srcs[0])) =>
{
new_instrs.pop();
continue;
}
_ => {}
}
}
match &instr {
Call(_, _, WriteBack(..), srcs, _)
if !is_unwritten(code_offset as CodeOffset, &Reference(srcs[0])) =>
{
continue;
}
_ => {}
}
new_instrs.push(instr);
}
new_instrs
}
}