1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

//! This module defines all kinds of structures in the Sparse Merkle Tree maintained in scratch pad.
//! There are four kinds of nodes:
//! - A `SubTree::Empty` represents an empty subtree with zero leaf. Its root hash is assumed to be
//! the default hash.
//!
//! - A `SubTree::NonEmpty` represents a subtree with one or more leaves, it carries its root hash.
//!
//! From a `SubTree::NonEmpty` one may or may not get an reference to its root node, depending on
//! how this subtree structure was created and if the root node has been dropped (when its persisted
//! to DB and given up by any possible cache). A non empty subtree can refer to one of two types of
//! nodes as its root:
//!
//! - An `InternalNode` is a node that has two children. It is same as the internal node in a
//! standard Merkle tree.
//!
//! - A `LeafNode` represents a single account. Similar to what is in storage, a leaf node has a
//! key which is the hash of the account address as well as a value hash which is the hash of the
//! corresponding account content. The difference is that a `LeafNode` does not always have the
//! value, in the case when the leaf was loaded into memory as part of a non-inclusion proof.

use diem_crypto::{
    hash::{CryptoHash, SPARSE_MERKLE_PLACEHOLDER_HASH},
    HashValue,
};
use diem_types::proof::{SparseMerkleInternalNode, SparseMerkleLeafNode};
use std::sync::{Arc, Weak};

#[derive(Clone, Debug)]
pub(crate) struct InternalNode<V> {
    pub left: SubTree<V>,
    pub right: SubTree<V>,
}

impl<V: CryptoHash> InternalNode<V> {
    pub fn calc_hash(&self) -> HashValue {
        SparseMerkleInternalNode::new(self.left.hash(), self.right.hash()).hash()
    }
}

#[derive(Clone, Debug)]
pub(crate) struct LeafNode<V> {
    pub key: HashValue,
    pub value: LeafValue<V>,
}

impl<V: CryptoHash> LeafNode<V> {
    pub fn new(key: HashValue, value: LeafValue<V>) -> Self {
        Self { key, value }
    }

    pub fn calc_hash(&self) -> HashValue {
        SparseMerkleLeafNode::new(self.key, self.value.hash).hash()
    }

    pub fn clone_with_weak_value(&self) -> Self {
        Self {
            key: self.key,
            value: self.value.weak(),
        }
    }
}

impl<V> From<&SparseMerkleLeafNode> for LeafNode<V>
where
    V: CryptoHash,
{
    fn from(leaf_node: &SparseMerkleLeafNode) -> Self {
        Self {
            key: leaf_node.key(),
            value: LeafValue::new_with_value_hash(leaf_node.value_hash()),
        }
    }
}

#[derive(Debug)]
pub(crate) enum Node<V> {
    Internal(InternalNode<V>),
    Leaf(LeafNode<V>),
}

impl<V: CryptoHash> Node<V> {
    pub fn new_leaf(key: HashValue, value: LeafValue<V>) -> Self {
        Self::Leaf(LeafNode::new(key, value))
    }

    pub fn new_internal(left: SubTree<V>, right: SubTree<V>) -> Self {
        Self::Internal(InternalNode { left, right })
    }

    pub fn calc_hash(&self) -> HashValue {
        match self {
            Self::Internal(internal_node) => internal_node.calc_hash(),
            Self::Leaf(leaf_node) => leaf_node.calc_hash(),
        }
    }
}

#[derive(Debug)]
pub enum Ref<R> {
    Shared(Arc<R>),
    Weak(Weak<R>),
}

impl<R> Ref<R> {
    pub fn new_unknown() -> Self {
        Self::Weak(Weak::new())
    }

    pub fn new_shared(referee: R) -> Self {
        Self::Shared(Arc::new(referee))
    }

    pub fn weak(&self) -> Self {
        Self::Weak(match self {
            Self::Shared(arc) => Arc::downgrade(arc),
            Self::Weak(weak) => weak.clone(),
        })
    }

    pub fn get_if_in_mem(&self) -> Option<Arc<R>> {
        match self {
            Self::Shared(arc) => Some(arc.clone()),
            Self::Weak(weak) => weak.upgrade(),
        }
    }
}

impl<R> Clone for Ref<R> {
    fn clone(&self) -> Self {
        match self {
            Self::Shared(arc) => Self::Shared(arc.clone()),
            Self::Weak(weak) => Self::Weak(weak.clone()),
        }
    }
}

pub(crate) type NodeHandle<V> = Ref<Node<V>>;

#[derive(Clone, Debug)]
pub(crate) enum SubTree<V> {
    Empty,
    NonEmpty {
        hash: HashValue,
        root: NodeHandle<V>,
    },
}

impl<V: CryptoHash> SubTree<V> {
    pub fn new_empty() -> Self {
        Self::Empty
    }

    pub fn new_unknown(hash: HashValue) -> Self {
        Self::NonEmpty {
            hash,
            root: NodeHandle::new_unknown(),
        }
    }

    pub fn new_leaf_with_value(key: HashValue, value: V) -> Self {
        Self::new_leaf_impl(key, LeafValue::new_with_value(value))
    }

    pub fn new_leaf_with_value_hash(key: HashValue, value_hash: HashValue) -> Self {
        Self::new_leaf_impl(key, LeafValue::new_with_value_hash(value_hash))
    }

    fn new_leaf_impl(key: HashValue, value: LeafValue<V>) -> Self {
        let leaf = Node::new_leaf(key, value);

        Self::NonEmpty {
            hash: leaf.calc_hash(),
            root: NodeHandle::new_shared(leaf),
        }
    }

    pub fn new_internal(left: Self, right: Self) -> Self {
        let internal = Node::new_internal(left, right);

        Self::NonEmpty {
            hash: internal.calc_hash(),
            root: NodeHandle::new_shared(internal),
        }
    }

    pub fn hash(&self) -> HashValue {
        match self {
            Self::Empty => *SPARSE_MERKLE_PLACEHOLDER_HASH,
            Self::NonEmpty { hash, .. } => *hash,
        }
    }

    pub fn weak(&self) -> Self {
        match self {
            Self::Empty => Self::Empty,
            Self::NonEmpty { hash, root } => Self::NonEmpty {
                hash: *hash,
                root: root.weak(),
            },
        }
    }

    pub fn get_node_if_in_mem(&self) -> Option<Arc<Node<V>>> {
        match self {
            Self::Empty => None,
            Self::NonEmpty { root, .. } => root.get_if_in_mem(),
        }
    }

    #[cfg(test)]
    pub fn is_unknown(&self) -> bool {
        matches!(
            self,
            Self::NonEmpty {
                root: NodeHandle::Weak(_),
                ..
            }
        )
    }

    #[cfg(test)]
    pub fn is_empty(&self) -> bool {
        matches!(self, SubTree::Empty)
    }
}

#[derive(Clone, Debug)]
pub struct LeafValue<V> {
    pub hash: HashValue,
    pub data: Ref<V>,
}

impl<V> LeafValue<V> {
    pub fn new_with_value(value: V) -> Self
    where
        V: CryptoHash,
    {
        Self {
            hash: value.hash(),
            data: Ref::new_shared(value),
        }
    }

    pub fn new_with_value_hash(value_hash: HashValue) -> Self {
        Self {
            hash: value_hash,
            data: Ref::new_unknown(),
        }
    }

    pub fn weak(&self) -> Self {
        Self {
            hash: self.hash,
            data: self.data.weak(),
        }
    }
}