1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

//! NibblePath library simplify operations with nibbles in a compact format for modified sparse
//! Merkle tree by providing powerful iterators advancing by either bit or nibble.

#[cfg(test)]
mod nibble_path_test;

use crate::nibble::{Nibble, ROOT_NIBBLE_HEIGHT};
use mirai_annotations::*;
#[cfg(any(test, feature = "fuzzing"))]
use proptest::{collection::vec, prelude::*};
use serde::{Deserialize, Serialize};
use std::{fmt, iter::FromIterator};

/// NibblePath defines a path in Merkle tree in the unit of nibble (4 bits).
#[derive(Clone, Hash, Eq, PartialEq, Ord, PartialOrd, Serialize, Deserialize)]
pub struct NibblePath {
    /// Indicates the total number of nibbles in bytes. Either `bytes.len() * 2 - 1` or
    /// `bytes.len() * 2`.
    // Guarantees intended ordering based on the top-to-bottom declaration order of the struct's
    // members.
    num_nibbles: usize,
    /// The underlying bytes that stores the path, 2 nibbles per byte. If the number of nibbles is
    /// odd, the second half of the last byte must be 0.
    bytes: Vec<u8>,
    // invariant num_nibbles <= ROOT_NIBBLE_HEIGHT
}

/// Supports debug format by concatenating nibbles literally. For example, [0x12, 0xa0] with 3
/// nibbles will be printed as "12a".
impl fmt::Debug for NibblePath {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.nibbles().try_for_each(|x| write!(f, "{:x}", x))
    }
}

/// Convert a vector of bytes into `NibblePath` using the lower 4 bits of each byte as nibble.
impl FromIterator<Nibble> for NibblePath {
    fn from_iter<I: IntoIterator<Item = Nibble>>(iter: I) -> Self {
        let mut nibble_path = NibblePath::new(vec![]);
        for nibble in iter {
            nibble_path.push(nibble);
        }
        nibble_path
    }
}

#[cfg(any(test, feature = "fuzzing"))]
impl Arbitrary for NibblePath {
    type Parameters = ();
    fn arbitrary_with(_args: Self::Parameters) -> Self::Strategy {
        arb_nibble_path().boxed()
    }
    type Strategy = BoxedStrategy<Self>;
}

#[cfg(any(test, feature = "fuzzing"))]
prop_compose! {
    fn arb_nibble_path()(
        mut bytes in vec(any::<u8>(), 0..=ROOT_NIBBLE_HEIGHT/2),
        is_odd in any::<bool>()
    ) -> NibblePath {
        if let Some(last_byte) = bytes.last_mut() {
            if is_odd {
                *last_byte &= 0xf0;
                return NibblePath::new_odd(bytes);
            }
        }
        NibblePath::new(bytes)
    }
}

#[cfg(any(test, feature = "fuzzing"))]
prop_compose! {
    fn arb_internal_nibble_path()(
        nibble_path in arb_nibble_path().prop_filter(
            "Filter out leaf paths.",
            |p| p.num_nibbles() < ROOT_NIBBLE_HEIGHT,
        )
    ) -> NibblePath {
        nibble_path
    }
}

impl NibblePath {
    /// Creates a new `NibblePath` from a vector of bytes assuming each byte has 2 nibbles.
    pub fn new(bytes: Vec<u8>) -> Self {
        checked_precondition!(bytes.len() <= ROOT_NIBBLE_HEIGHT / 2);
        let num_nibbles = bytes.len() * 2;
        NibblePath { num_nibbles, bytes }
    }

    /// Similar to `new()` but assumes that the bytes have one less nibble.
    pub fn new_odd(bytes: Vec<u8>) -> Self {
        checked_precondition!(bytes.len() <= ROOT_NIBBLE_HEIGHT / 2);
        assert_eq!(
            bytes.last().expect("Should have odd number of nibbles.") & 0x0f,
            0,
            "Last nibble must be 0."
        );
        let num_nibbles = bytes.len() * 2 - 1;
        NibblePath { num_nibbles, bytes }
    }

    /// Adds a nibble to the end of the nibble path.
    pub fn push(&mut self, nibble: Nibble) {
        assert!(ROOT_NIBBLE_HEIGHT > self.num_nibbles);
        if self.num_nibbles % 2 == 0 {
            self.bytes.push(u8::from(nibble) << 4);
        } else {
            self.bytes[self.num_nibbles / 2] |= u8::from(nibble);
        }
        self.num_nibbles += 1;
    }

    /// Pops a nibble from the end of the nibble path.
    pub fn pop(&mut self) -> Option<Nibble> {
        let poped_nibble = if self.num_nibbles % 2 == 0 {
            self.bytes.last_mut().map(|last_byte| {
                let nibble = *last_byte & 0x0f;
                *last_byte &= 0xf0;
                Nibble::from(nibble)
            })
        } else {
            self.bytes.pop().map(|byte| Nibble::from(byte >> 4))
        };
        if poped_nibble.is_some() {
            self.num_nibbles -= 1;
        }
        poped_nibble
    }

    /// Returns the last nibble.
    pub fn last(&self) -> Option<Nibble> {
        let last_byte_option = self.bytes.last();
        if self.num_nibbles % 2 == 0 {
            last_byte_option.map(|last_byte| Nibble::from(*last_byte & 0x0f))
        } else {
            let last_byte = last_byte_option.expect("Last byte must exist if num_nibbles is odd.");
            Some(Nibble::from(*last_byte >> 4))
        }
    }

    /// Get the i-th bit.
    fn get_bit(&self, i: usize) -> bool {
        assert!(i < self.num_nibbles * 4);
        let pos = i / 8;
        let bit = 7 - i % 8;
        ((self.bytes[pos] >> bit) & 1) != 0
    }

    /// Get the i-th nibble.
    pub fn get_nibble(&self, i: usize) -> Nibble {
        assert!(i < self.num_nibbles);
        Nibble::from((self.bytes[i / 2] >> (if i % 2 == 1 { 0 } else { 4 })) & 0xf)
    }

    /// Get a bit iterator iterates over the whole nibble path.
    pub fn bits(&self) -> BitIterator {
        assume!(self.num_nibbles <= ROOT_NIBBLE_HEIGHT); // invariant
        BitIterator {
            nibble_path: self,
            pos: (0..self.num_nibbles * 4),
        }
    }

    /// Get a nibble iterator iterates over the whole nibble path.
    pub fn nibbles(&self) -> NibbleIterator {
        assume!(self.num_nibbles <= ROOT_NIBBLE_HEIGHT); // invariant
        NibbleIterator::new(self, 0, self.num_nibbles)
    }

    /// Get the total number of nibbles stored.
    pub fn num_nibbles(&self) -> usize {
        self.num_nibbles
    }

    ///  Returns `true` if the nibbles contains no elements.
    pub fn is_empty(&self) -> bool {
        self.num_nibbles() == 0
    }

    /// Get the underlying bytes storing nibbles.
    pub fn bytes(&self) -> &[u8] {
        &self.bytes
    }
}

pub trait Peekable: Iterator {
    /// Returns the `next()` value without advancing the iterator.
    fn peek(&self) -> Option<Self::Item>;
}

/// BitIterator iterates a nibble path by bit.
pub struct BitIterator<'a> {
    nibble_path: &'a NibblePath,
    pos: std::ops::Range<usize>,
}

impl<'a> Peekable for BitIterator<'a> {
    /// Returns the `next()` value without advancing the iterator.
    fn peek(&self) -> Option<Self::Item> {
        if self.pos.start < self.pos.end {
            Some(self.nibble_path.get_bit(self.pos.start))
        } else {
            None
        }
    }
}

/// BitIterator spits out a boolean each time. True/false denotes 1/0.
impl<'a> Iterator for BitIterator<'a> {
    type Item = bool;
    fn next(&mut self) -> Option<Self::Item> {
        self.pos.next().map(|i| self.nibble_path.get_bit(i))
    }
}

/// Support iterating bits in reversed order.
impl<'a> DoubleEndedIterator for BitIterator<'a> {
    fn next_back(&mut self) -> Option<Self::Item> {
        self.pos.next_back().map(|i| self.nibble_path.get_bit(i))
    }
}

/// NibbleIterator iterates a nibble path by nibble.
#[derive(Debug)]
pub struct NibbleIterator<'a> {
    /// The underlying nibble path that stores the nibbles
    nibble_path: &'a NibblePath,

    /// The current index, `pos.start`, will bump by 1 after calling `next()` until `pos.start ==
    /// pos.end`.
    pos: std::ops::Range<usize>,

    /// The start index of the iterator. At the beginning, `pos.start == start`. [start, pos.end)
    /// defines the range of `nibble_path` this iterator iterates over. `nibble_path` refers to
    /// the entire underlying buffer but the range may only be partial.
    start: usize,
    // invariant self.start <= self.pos.start;
    // invariant self.pos.start <= self.pos.end;
    // invariant self.pos.end <= ROOT_NIBBLE_HEIGHT;
}

/// NibbleIterator spits out a byte each time. Each byte must be in range [0, 16).
impl<'a> Iterator for NibbleIterator<'a> {
    type Item = Nibble;
    fn next(&mut self) -> Option<Self::Item> {
        self.pos.next().map(|i| self.nibble_path.get_nibble(i))
    }
}

impl<'a> Peekable for NibbleIterator<'a> {
    /// Returns the `next()` value without advancing the iterator.
    fn peek(&self) -> Option<Self::Item> {
        if self.pos.start < self.pos.end {
            Some(self.nibble_path.get_nibble(self.pos.start))
        } else {
            None
        }
    }
}

impl<'a> NibbleIterator<'a> {
    fn new(nibble_path: &'a NibblePath, start: usize, end: usize) -> Self {
        precondition!(start <= end);
        precondition!(start <= ROOT_NIBBLE_HEIGHT);
        precondition!(end <= ROOT_NIBBLE_HEIGHT);
        Self {
            nibble_path,
            pos: (start..end),
            start,
        }
    }

    /// Returns a nibble iterator that iterates all visited nibbles.
    pub fn visited_nibbles(&self) -> NibbleIterator<'a> {
        assume!(self.start <= self.pos.start); // invariant
        assume!(self.pos.start <= ROOT_NIBBLE_HEIGHT); // invariant
        Self::new(self.nibble_path, self.start, self.pos.start)
    }

    /// Returns a nibble iterator that iterates all remaining nibbles.
    pub fn remaining_nibbles(&self) -> NibbleIterator<'a> {
        assume!(self.pos.start <= self.pos.end); // invariant
        assume!(self.pos.end <= ROOT_NIBBLE_HEIGHT); // invariant
        Self::new(self.nibble_path, self.pos.start, self.pos.end)
    }

    /// Turn it into a `BitIterator`.
    pub fn bits(&self) -> BitIterator<'a> {
        assume!(self.pos.start <= self.pos.end); // invariant
        assume!(self.pos.end <= ROOT_NIBBLE_HEIGHT); // invariant
        BitIterator {
            nibble_path: self.nibble_path,
            pos: (self.pos.start * 4..self.pos.end * 4),
        }
    }

    /// Cut and return the range of the underlying `nibble_path` that this iterator is iterating
    /// over as a new `NibblePath`
    pub fn get_nibble_path(&self) -> NibblePath {
        self.visited_nibbles()
            .chain(self.remaining_nibbles())
            .collect()
    }

    /// Get the number of nibbles that this iterator covers.
    pub fn num_nibbles(&self) -> usize {
        assume!(self.start <= self.pos.end); // invariant
        self.pos.end - self.start
    }

    /// Return `true` if the iteration is over.
    pub fn is_finished(&self) -> bool {
        self.peek().is_none()
    }
}

/// Advance both iterators if their next nibbles are the same until either reaches the end or
/// the find a mismatch. Return the number of matched nibbles.
pub fn skip_common_prefix<I1, I2>(x: &mut I1, y: &mut I2) -> usize
where
    I1: Iterator + Peekable,
    I2: Iterator + Peekable,
    <I1 as Iterator>::Item: std::cmp::PartialEq<<I2 as Iterator>::Item>,
{
    let mut count = 0;
    loop {
        let x_peek = x.peek();
        let y_peek = y.peek();
        if x_peek.is_none()
            || y_peek.is_none()
            || x_peek.expect("cannot be none") != y_peek.expect("cannot be none")
        {
            break;
        }
        count += 1;
        x.next();
        y.next();
    }
    count
}