1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
use move_binary_format::{access::ModuleAccess, file_format::CompiledModule};
use petgraph::graphmap::DiGraphMap;
use anyhow::{bail, Result};
use std::collections::BTreeMap;
pub struct DependencyGraph<'a> {
modules: Vec<&'a CompiledModule>,
graph: DiGraphMap<ModuleIndex, ()>,
}
#[derive(Debug, Clone, Copy, Hash, Eq, PartialEq, PartialOrd, Ord)]
struct ModuleIndex(usize);
impl<'a> DependencyGraph<'a> {
pub fn new(module_iter: impl IntoIterator<Item = &'a CompiledModule>) -> Self {
let mut modules = vec![];
let mut reverse_modules = BTreeMap::new();
for (i, m) in module_iter.into_iter().enumerate() {
modules.push(m);
assert!(
reverse_modules
.insert(m.self_id(), ModuleIndex(i))
.is_none(),
"Duplicate module found"
);
}
let mut graph = DiGraphMap::new();
for module in &modules {
let module_idx: ModuleIndex = *reverse_modules.get(&module.self_id()).unwrap();
let deps = module.immediate_dependencies();
if deps.is_empty() {
graph.add_node(module_idx);
} else {
for dep in deps {
let dep_idx = *reverse_modules.get(&dep).expect("Missing dependency");
graph.add_edge(dep_idx, module_idx, ());
}
}
}
DependencyGraph { modules, graph }
}
pub fn compute_topological_order(&self) -> Result<impl Iterator<Item = &CompiledModule>> {
match petgraph::algo::toposort(&self.graph, None) {
Err(_) => bail!("Circular dependency detected"),
Ok(ordered_idxs) => Ok(ordered_idxs.into_iter().map(move |idx| self.modules[idx.0])),
}
}
}