Crate nom[−][src]
Expand description
nom, eating data byte by byte
nom is a parser combinator library with a focus on safe parsing, streaming patterns, and as much as possible zero copy.
Example
extern crate nom;
use nom::{
IResult,
bytes::complete::{tag, take_while_m_n},
combinator::map_res,
sequence::tuple};
#[derive(Debug,PartialEq)]
pub struct Color {
pub red: u8,
pub green: u8,
pub blue: u8,
}
fn from_hex(input: &str) -> Result<u8, std::num::ParseIntError> {
u8::from_str_radix(input, 16)
}
fn is_hex_digit(c: char) -> bool {
c.is_digit(16)
}
fn hex_primary(input: &str) -> IResult<&str, u8> {
map_res(
take_while_m_n(2, 2, is_hex_digit),
from_hex
)(input)
}
fn hex_color(input: &str) -> IResult<&str, Color> {
let (input, _) = tag("#")(input)?;
let (input, (red, green, blue)) = tuple((hex_primary, hex_primary, hex_primary))(input)?;
Ok((input, Color { red, green, blue }))
}
fn main() {
assert_eq!(hex_color("#2F14DF"), Ok(("", Color {
red: 47,
green: 20,
blue: 223,
})));
}
The code is available on Github
There are a few guides with more details about the design of nom macros, how to write parsers, or the error management system.
Looking for a specific combinator? Read the “choose a combinator” guide
If you are upgrading to nom 5.0, please read the migration document.
See also the FAQ.
Parser combinators
Parser combinators are an approach to parsers that is very different from software like lex and yacc. Instead of writing the grammar in a separate syntax and generating the corresponding code, you use very small functions with very specific purposes, like “take 5 bytes”, or “recognize the word ‘HTTP’”, and assemble them in meaningful patterns like “recognize ‘HTTP’, then a space, then a version”. The resulting code is small, and looks like the grammar you would have written with other parser approaches.
This gives us a few advantages:
- the parsers are small and easy to write
- the parsers components are easy to reuse (if they’re general enough, please add them to nom!)
- the parsers components are easy to test separately (unit tests and property-based tests)
- the parser combination code looks close to the grammar you would have written
- you can build partial parsers, specific to the data you need at the moment, and ignore the rest
Here is an example of one such parser, to recognize text between parentheses:
use nom::{
IResult,
sequence::delimited,
// see the "streaming/complete" paragraph lower for an explanation of these submodules
character::complete::char,
bytes::complete::is_not
};
fn parens(input: &str) -> IResult<&str, &str> {
delimited(char('('), is_not(")"), char(')'))(input)
}
It defines a function named parens
which will recognize a sequence of the
character (
, the longest byte array not containing )
, then the character
)
, and will return the byte array in the middle.
Here is another parser, written without using nom’s combinators this time:
#[macro_use]
extern crate nom;
use nom::{IResult, Err, Needed};
fn take4(i: &[u8]) -> IResult<&[u8], &[u8]>{
if i.len() < 4 {
Err(Err::Incomplete(Needed::Size(4)))
} else {
Ok((&i[4..], &i[0..4]))
}
}
This function takes a byte array as input, and tries to consume 4 bytes. Writing all the parsers manually, like this, is dangerous, despite Rust’s safety features. There are still a lot of mistakes one can make. That’s why nom provides a list of function and macros to help in developing parsers.
With functions, you would write it like this:
use nom::{IResult, bytes::streaming::take};
fn take4(input: &str) -> IResult<&str, &str> {
take(4u8)(input)
}
With macros, you would write it like this:
#[macro_use]
extern crate nom;
named!(take4, take!(4));
nom has used macros for combinators from versions 1 to 4, and from version 5, it proposes new combinators as functions, but still allows the macros style (macros have been rewritten to use the functions under the hood). For new parsers, we recommend using the functions instead of macros, since rustc messages will be much easier to understand.
A parser in nom is a function which, for an input type I
, an output type O
and an optional error type E
, will have the following signature:
fn parser(input: I) -> IResult<I, O, E>;
Or like this, if you don’t want to specify a custom error type (it will be u32
by default):
fn parser(input: I) -> IResult<I, O>;
IResult
is an alias for the Result
type:
use nom::{Needed, error::ErrorKind};
type IResult<I, O, E = (I,ErrorKind)> = Result<(I, O), Err<E>>;
enum Err<E> {
Incomplete(Needed),
Error(E),
Failure(E),
}
It can have the following values:
- a correct result
Ok((I,O))
with the first element being the remaining of the input (not parsed yet), and the second the output value; - an error
Err(Err::Error(c))
withc
an error that can be built from the input position and a parser specific error - an error
Err(Err::Incomplete(Needed))
indicating that more input is necessary.Needed
can indicate how much data is needed - an error
Err(Err::Failure(c))
. It works like theError
case, except it indicates an unrecoverable error: we cannot backtrack and test another parser
Please refer to the “choose a combinator” guide for an exhaustive list of parsers. See also the rest of the documentation here. .
Making new parsers with function combinators
nom is based on functions that generate parsers, with a signature like
this: (arguments) -> impl Fn(Input) -> IResult<Input, Output, Error>
.
The arguments of a combinator can be direct values (like take
which uses
a number of bytes or character as argument) or even other parsers (like
delimited
which takes as argument 3 parsers, and returns the result of
the second one if all are successful).
Here are some examples:
use nom::IResult;
use nom::bytes::complete::{tag, take};
fn abcd_parser(i: &str) -> IResult<&str, &str> {
tag("abcd")(i) // will consume bytes if the input begins with "abcd"
}
fn take_10(i: &[u8]) -> IResult<&[u8], &[u8]> {
take(10u8)(i) // will consume and return 10 bytes of input
}
Combining parsers
There are higher level patterns, like the alt
combinator, which
provides a choice between multiple parsers. If one branch fails, it tries
the next, and returns the result of the first parser that succeeds:
use nom::IResult;
use nom::branch::alt;
use nom::bytes::complete::tag;
let alt_tags = alt((tag("abcd"), tag("efgh")));
assert_eq!(alt_tags(&b"abcdxxx"[..]), Ok((&b"xxx"[..], &b"abcd"[..])));
assert_eq!(alt_tags(&b"efghxxx"[..]), Ok((&b"xxx"[..], &b"efgh"[..])));
assert_eq!(alt_tags(&b"ijklxxx"[..]), Err(nom::Err::Error((&b"ijklxxx"[..], nom::error::ErrorKind::Tag))));
The opt
combinator makes a parser optional. If the child parser returns
an error, opt
will still succeed and return None:
use nom::{IResult, combinator::opt, bytes::complete::tag};
fn abcd_opt(i: &[u8]) -> IResult<&[u8], Option<&[u8]>> {
opt(tag("abcd"))(i)
}
assert_eq!(abcd_opt(&b"abcdxxx"[..]), Ok((&b"xxx"[..], Some(&b"abcd"[..]))));
assert_eq!(abcd_opt(&b"efghxxx"[..]), Ok((&b"efghxxx"[..], None)));
many0
applies a parser 0 or more times, and returns a vector of the aggregated results:
use nom::{IResult, multi::many0, bytes::complete::tag};
use std::str;
fn multi(i: &str) -> IResult<&str, Vec<&str>> {
many0(tag("abcd"))(i)
}
let a = "abcdef";
let b = "abcdabcdef";
let c = "azerty";
assert_eq!(multi(a), Ok(("ef", vec!["abcd"])));
assert_eq!(multi(b), Ok(("ef", vec!["abcd", "abcd"])));
assert_eq!(multi(c), Ok(("azerty", Vec::new())));
Here are some basic combining macros available:
opt
: will make the parser optional (if it returns theO
type, the new parser returnsOption<O>
)many0
: will apply the parser 0 or more times (if it returns theO
type, the new parser returnsVec<O>
)many1
: will apply the parser 1 or more times
There are more complex (and more useful) parsers like tuple!
, which is
used to apply a series of parsers then assemble their results.
Example with tuple
:
use nom::{error::ErrorKind, Needed,
number::streaming::be_u16,
bytes::streaming::{tag, take},
sequence::tuple};
let tpl = tuple((be_u16, take(3u8), tag("fg")));
assert_eq!(
tpl(&b"abcdefgh"[..]),
Ok((
&b"h"[..],
(0x6162u16, &b"cde"[..], &b"fg"[..])
))
);
assert_eq!(tpl(&b"abcde"[..]), Err(nom::Err::Incomplete(Needed::Size(2))));
let input = &b"abcdejk"[..];
assert_eq!(tpl(input), Err(nom::Err::Error((&input[5..], ErrorKind::Tag))));
But you can also use a sequence of combinators written in imperative style,
thanks to the ?
operator:
use nom::{IResult, bytes::complete::tag};
#[derive(Debug, PartialEq)]
struct A {
a: u8,
b: u8
}
fn ret_int1(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,1)) }
fn ret_int2(i:&[u8]) -> IResult<&[u8], u8> { Ok((i,2)) }
fn f(i: &[u8]) -> IResult<&[u8], A> {
// if successful, the parser returns `Ok((remaining_input, output_value))` that we can destructure
let (i, _) = tag("abcd")(i)?;
let (i, a) = ret_int1(i)?;
let (i, _) = tag("efgh")(i)?;
let (i, b) = ret_int2(i)?;
Ok((i, A { a, b }))
}
let r = f(b"abcdefghX");
assert_eq!(r, Ok((&b"X"[..], A{a: 1, b: 2})));
Streaming / Complete
Some of nom’s modules have streaming
or complete
submodules. They hold
different variants of the same combinators.
A streaming parser assumes that we might not have all of the input data. This can happen with some network protocol or large file parsers, where the input buffer can be full and need to be resized or refilled.
A complete parser assumes that we already have all of the input data. This will be the common case with small files that can be read entirely to memory.
Here is how it works in practice:
use nom::{IResult, Err, Needed, error::ErrorKind, bytes, character};
fn take_streaming(i: &[u8]) -> IResult<&[u8], &[u8]> {
bytes::streaming::take(4u8)(i)
}
fn take_complete(i: &[u8]) -> IResult<&[u8], &[u8]> {
bytes::complete::take(4u8)(i)
}
// both parsers will take 4 bytes as expected
assert_eq!(take_streaming(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..])));
assert_eq!(take_complete(&b"abcde"[..]), Ok((&b"e"[..], &b"abcd"[..])));
// if the input is smaller than 4 bytes, the streaming parser
// will return `Incomplete` to indicate that we need more data
assert_eq!(take_streaming(&b"abc"[..]), Err(Err::Incomplete(Needed::Size(4))));
// but the complete parser will return an error
assert_eq!(take_complete(&b"abc"[..]), Err(Err::Error((&b"abc"[..], ErrorKind::Eof))));
// the alpha0 function recognizes 0 or more alphabetic characters
fn alpha0_streaming(i: &str) -> IResult<&str, &str> {
character::streaming::alpha0(i)
}
fn alpha0_complete(i: &str) -> IResult<&str, &str> {
character::complete::alpha0(i)
}
// if there's a clear limit to the recognized characters, both parsers work the same way
assert_eq!(alpha0_streaming("abcd;"), Ok((";", "abcd")));
assert_eq!(alpha0_complete("abcd;"), Ok((";", "abcd")));
// but when there's no limit, the streaming version returns `Incomplete`, because it cannot
// know if more input data should be recognized. The whole input could be "abcd;", or
// "abcde;"
assert_eq!(alpha0_streaming("abcd"), Err(Err::Incomplete(Needed::Size(1))));
// while the complete version knows that all of the data is there
assert_eq!(alpha0_complete("abcd"), Ok(("", "abcd")));
Going further: read the guides!
Re-exports
Modules
bit level parsers
choice combinators
parsers recognizing bytes streams
character specific parsers and combinators
general purpose combinators
Error management
Lib module to re-export everything needed from std
or core
/alloc
. This is how serde
does
it, albeit there it is not public.
method combinators
combinators applying their child parser multiple times
parsers recognizing numbers
combinators applying parsers in sequence
Support for whitespace delimited formats
Macros
Add an error if the child parser fails
Try a list of parsers and return the result of the first successful one
do not use: method combinators moved to the nom-methods crate
Transforms its byte slice input into a bit stream for the underlying parser. This allows the given bit stream parser to work on a byte slice input.
Counterpart to bits, bytes! transforms its bit stream input into a byte slice for the underlying parser, allowing byte-slice parsers to work on bit streams.
Used to wrap common expressions and function as macros
do not use: method combinators moved to the nom-methods crate
replaces a Incomplete
returned by the child parser
with an Error
cond!(bool, I -> IResult<I,O>) => I -> IResult<I, Option<O>>
Conditional combinator
count!(I -> IResult<I,O>, nb) => I -> IResult<I, Vec<O>>
Applies the child parser a specified number of times
Prints a message if the parser fails
Prints a message and the input if the parser fails
delimited!(I -> IResult<I,T>, I -> IResult<I,O>, I -> IResult<I,U>) => I -> IResult<I, O>
delimited(opening, X, closing) returns X
do_parse!(I->IResult<I,A> >> I->IResult<I,B> >> ... I->IResult<I,X> , ( O ) ) => I -> IResult<I, O>
do_parse applies sub parsers in a sequence.
it can store intermediary results and make them available
for later parsers
helper macros to build a separator parser
eof!()
returns its input if it is at the end of input data
creates a parse error from a nom::ErrorKind
,
the position in the input and the next error in
the parsing tree.
creates a parse error from a nom::ErrorKind
and the position in the input
escaped!(T -> IResult<T, T>, U, T -> IResult<T, T>) => T -> IResult<T, T> where T: InputIter, U: AsChar
matches a byte string with escaped characters.
escaped_transform!(&[T] -> IResult<&[T], &[T]>, T, &[T] -> IResult<&[T], &[T]>) => &[T] -> IResult<&[T], Vec<T>>
matches a byte string with escaped characters.
exact!()
will fail if the child parser does not consume the whole data
translate parser result from IResult<I,O,u32> to IResult<I,O,E> with a custom type
flat_map!(R -> IResult<R,S>, S -> IResult<S,T>) => R -> IResult<R, T>
fold_many0!(I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R>
Applies the parser 0 or more times and folds the list of return values
fold_many1!(I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R>
Applies the parser 1 or more times and folds the list of return values
fold_many_m_n!(usize, usize, I -> IResult<I,O>, R, Fn(R, O) -> R) => I -> IResult<I, R>
Applies the parser between m and n times (n included) and folds the list of return value
if the parameter is nom::Endianness::Big, parse a big endian i16 integer, otherwise a little endian i16 integer
if the parameter is nom::Endianness::Big, parse a big endian i32 integer, otherwise a little endian i32 integer
if the parameter is nom::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer
if the parameter is nom::Endianness::Big, parse a big endian i64 integer, otherwise a little endian i64 integer
is_a!(&[T]) => &[T] -> IResult<&[T], &[T]>
returns the longest list of bytes that appear in the provided array
is_not!(&[T:AsBytes]) => &[T] -> IResult<&[T], &[T]>
returns the longest list of bytes that do not appear in the provided array
length_count!(I -> IResult<I, nb>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>>
gets a number from the first parser, then applies the second parser that many times
length_data!(I -> IResult<I, nb>) => O
length_value!(I -> IResult<I, nb>, I -> IResult<I,O>) => I -> IResult<I, O>
many0!(I -> IResult<I,O>) => I -> IResult<I, Vec<O>>
Applies the parser 0 or more times and returns the list of results in a Vec.
many0_count!(I -> IResult<I,O>) => I -> IResult<I, usize>
Applies the parser 0 or more times and returns the number of times the parser was applied.
many1!(I -> IResult<I,O>) => I -> IResult<I, Vec<O>>
Applies the parser 1 or more times and returns the list of results in a Vec
many1_count!(I -> IResult<I,O>) => I -> IResult<I, usize>
Applies the parser 1 or more times and returns the number of times the parser was applied.
many_m_n!(usize, usize, I -> IResult<I,O>) => I -> IResult<I, Vec<O>>
Applies the parser between m and n times (n included) and returns the list of
results in a Vec
many_till!(I -> IResult<I,O>, I -> IResult<I,P>) => I -> IResult<I, (Vec<O>, P)>
Applies the first parser until the second applies. Returns a tuple containing the list
of results from the first in a Vec and the result of the second.
map!(I -> IResult<I, O>, O -> P) => I -> IResult<I, P>
map_opt!(I -> IResult<I, O>, O -> Option<P>) => I -> IResult<I, P>
maps a function returning an Option on the output of a parser
map_res!(I -> IResult<I, O>, O -> Result<P>) => I -> IResult<I, P>
maps a function returning a Result on the output of a parser
do not use: method combinators moved to the nom-methods crate
Makes a function from a parser combination
Makes a function from a parser combination with arguments.
Makes a function from a parser combination, with attributes
matches anything but the provided characters
not!(I -> IResult<I,O>) => I -> IResult<I, ()>
returns a result only if the embedded parser returns Error or Err(Err::Incomplete)
does not consume the input
Character level parsers matches one of the provided characters
opt!(I -> IResult<I,O>) => I -> IResult<I, Option<O>>
make the underlying parser optional
opt_res!(I -> IResult<I,O>) => I -> IResult<I, Result<nom::Err,O>>
make the underlying parser optional
pair!(I -> IResult<I,O>, I -> IResult<I,P>) => I -> IResult<I, (O,P)>
pair returns a tuple of the results of its two child parsers of both succeed
parse_to!(O) => I -> IResult<I, O>
uses the parse
method from std::str::FromStr
to convert the current
input to the specified type
peek!(I -> IResult<I,O>) => I -> IResult<I, O>
returns a result without consuming the input
permutation!(I -> IResult<I,A>, I -> IResult<I,B>, ... I -> IResult<I,X> ) => I -> IResult<I, (A,B,...X)>
applies its sub parsers in a sequence, but independent from their order
this parser will only succeed if all of its sub parsers succeed
preceded!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, O>
preceded returns the result of its second parser if both succeed
recognize!(I -> IResult<I, O> ) => I -> IResult<I, I>
if the child parser was successful, return the consumed input as produced value
Prevents backtracking if the child parser fails
sep is the parser rewriting macro for whitespace separated formats
separated_list!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>>
separated_list(sep, X) returns a Vec
separated_nonempty_list!(I -> IResult<I,T>, I -> IResult<I,O>) => I -> IResult<I, Vec<O>>
separated_nonempty_list(sep, X) returns a Vec
separated_pair!(I -> IResult<I,O>, I -> IResult<I, T>, I -> IResult<I,P>) => I -> IResult<I, (O,P)>
separated_pair(X,sep,Y) returns a tuple of its first and third child parsers
if all 3 succeed
switch!(I -> IResult<I,P>, P => I -> IResult<I,O> | ... | P => I -> IResult<I,O> ) => I -> IResult<I, O>
choose the next parser depending on the result of the first one, if successful,
and returns the result of the second parser
tag!(&[T]: nom::AsBytes) => &[T] -> IResult<&[T], &[T]>
declares a byte array as a suite to recognize
Matches the given bit pattern.
tag_no_case!(&[T]) => &[T] -> IResult<&[T], &[T]>
declares a case insensitive ascii string as a suite to recognize
take!(nb) => &[T] -> IResult<&[T], &[T]>
generates a parser consuming the specified number of bytes
Consumes the specified number of bits and returns them as the specified type.
take_str!(nb) => &[T] -> IResult<&[T], &str>
same as take! but returning a &str
take_till!(T -> bool) => &[T] -> IResult<&[T], &[T]>
returns the longest list of bytes until the provided function succeeds
take_till1!(T -> bool) => &[T] -> IResult<&[T], &[T]>
returns the longest non empty list of bytes until the provided function succeeds
take_until!(tag) => &[T] -> IResult<&[T], &[T]>
consumes data until it finds the specified tag.
take_until1!(tag) => &[T] -> IResult<&[T], &[T]>
consumes data (at least one byte) until it finds the specified tag
take_while!(T -> bool) => &[T] -> IResult<&[T], &[T]>
returns the longest list of bytes until the provided function fails.
take_while1!(T -> bool) => &[T] -> IResult<&[T], &[T]>
returns the longest (non empty) list of bytes until the provided function fails.
take_while_m_n!(m: usize, n: usize, T -> bool) => &[T] -> IResult<&[T], &[T]>
returns a list of bytes or characters for which the provided function returns true.
the returned list’s size will be at least m, and at most n
tap!(name: I -> IResult<I,O> => { block }) => I -> IResult<I, O>
allows access to the parser’s result without affecting it
terminated!(I -> IResult<I,O>, I -> IResult<I,T>) => I -> IResult<I, O>
terminated returns the result of its first parser if both succeed
A bit like std::try!
, this macro will return the remaining input and
parsed value if the child parser returned Ok
, and will do an early
return for the Err
side.
tuple!(I->IResult<I,A>, I->IResult<I,B>, ... I->IResult<I,X>) => I -> IResult<I, (A, B, ..., X)>
chains parsers and assemble the sub results in a tuple.
if the parameter is nom::Endianness::Big, parse a big endian u16 integer, otherwise a little endian u16 integer
if the parameter is nom::Endianness::Big, parse a big endian u32 integer, otherwise a little endian u32 integer
if the parameter is nom::Endianness::Big, parse a big endian u64 integer, otherwise a little endian u64 integer
if the parameter is nom::Endianness::Big, parse a big endian u128 integer, otherwise a little endian u128 integer
value!(T, R -> IResult<R, S> ) => R -> IResult<R, T>
verify!(I -> IResult<I, O>, O -> bool) => I -> IResult<I, O>
returns the result of the child parser if it satisfies a verification function
applies the separator parser before the other parser
ws!(I -> IResult<I,O>) => I -> IResult<I, O>
Enums
indicates wether a comparison was successful, an error, or if more data was needed
The Err
enum indicates the parser was not successful
Contains information on needed data if a parser returned Incomplete
Traits
Helper trait for types that can be viewed as a byte slice
transforms common types to a char for basic token parsing
abstracts comparison operations
equivalent From implementation to avoid orphan rules in bits parsers
abstracts something which can extend an Extend
used to build modified input slices in escaped_transform
look for a substring in self
look for a token in self
Helper trait to show a byte slice as a hex dump
abstracts common iteration operations on the input type
abstract method to calculate the input length
abstracts slicing operations
methods to take as much input as possible until the provided function returns true for the current element
useful functions to calculate the offset between slices and show a hexdump of a slice
used to integrate str’s parse() method
slicing operations using ranges
Helper trait to convert numbers to usize
Dummy trait used for default implementations (currently only used for InputTakeAtPosition
).
Functions
Prints a message and the input if the parser fails
Type Definitions
Holds the result of parsing functions