Files
addr2line
adler
aho_corasick
arrayvec
atty
backtrace
bitflags
camino
cargo_metadata
cargo_nextest
cargo_platform
cfg_expr
cfg_if
chrono
clap
clap_derive
color_eyre
config
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
ctrlc
datatest_stable
debug_ignore
duct
either
enable_ansi_support
env_logger
eyre
fixedbitset
gimli
guppy
guppy_workspace_hack
hashbrown
humantime
humantime_serde
indent_write
indenter
indexmap
is_ci
itertools
itoa
lazy_static
lexical_core
libc
log
memchr
memoffset
miniz_oxide
nested
nextest_metadata
nextest_runner
nix
nom
num_cpus
num_integer
num_traits
object
once_cell
os_pipe
os_str_bytes
owo_colors
pathdiff
petgraph
proc_macro2
proc_macro_error
proc_macro_error_attr
quick_junit
quick_xml
quote
rayon
rayon_core
regex
regex_syntax
rustc_demangle
ryu
same_file
scopeguard
semver
serde
serde_derive
serde_json
shared_child
shellwords
smallvec
static_assertions
strip_ansi_escapes
strsim
structopt
structopt_derive
supports_color
syn
target_lexicon
target_spec
termcolor
textwrap
time
toml
twox_hash
unicode_xid
utf8parse
vte
vte_generate_state_changes
walkdir
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
//! An implementation of bigcomp for Rust.
//!
//! Compares the known string to theoretical digits generated on the
//! fly for `b+h`, where a string representation of a float is between
//! `b` and `b+u`, where `b+u` is 1 unit in the least-precision. Therefore,
//! the string must be close to `b+h`.
//!
//! Adapted from:
//!     https://www.exploringbinary.com/bigcomp-deciding-truncated-near-halfway-conversions/

use crate::lib::cmp;
use crate::util::*;
use super::alias::*;
use super::bignum::*;
use super::format::*;
use super::math::*;

// ROUNDING

/// Custom rounding for the ratio.
#[allow(unused_variables)]
pub(super) fn round_to_native<F>(f: F, order: cmp::Ordering, kind: RoundingKind)
    -> F
    where F: FloatType
{
    #[cfg(not(feature = "rounding"))] {
        match order {
            cmp::Ordering::Greater  => f.next_positive(),
            cmp::Ordering::Less     => f,
            cmp::Ordering::Equal    => f.round_positive_even(),
        }
    }

    // Compare the actual digits to the round-down or halfway point.
    #[cfg(feature = "rounding")] {
        match order {
            cmp::Ordering::Greater  => match kind {
                // Comparison with `b+h`, above. Round-up.
                RoundingKind::NearestTieEven     => f.next_positive(),
                RoundingKind::NearestTieAwayZero => f.next_positive(),
                // Comparison with `b`, above. Truncated digits.
                RoundingKind::Upward             => f.next_positive(),
                RoundingKind::Downward           => f,
                _                                => unimplemented!(),
            },
            // This cannot happen for RoundingKind Upward or Downward.
            // For round-nearest algorithms, we are below `b+h` so round-down.
            cmp::Ordering::Less     => match kind {
                // Comparison with `b+h`, below. Stay put.
                RoundingKind::NearestTieEven     => f,
                RoundingKind::NearestTieAwayZero => f,
                // Comparison with `b`, below. Truncated digits, but below our
                // estimate `b`.
                RoundingKind::Upward             => f,
                RoundingKind::Downward           => f.prev_positive(),
                _                                => unimplemented!(),
            },
            cmp::Ordering::Equal    => match kind {
                // Only round-up if the mantissa is odd.
                RoundingKind::NearestTieEven     => f.round_positive_even(),
                // Always round-up, we want to go away from 0.
                RoundingKind::NearestTieAwayZero => f.next_positive(),
                // Comparison with `b`, equal. No truncated digits.
                RoundingKind::Upward             => f,
                RoundingKind::Downward           => f,
                _                                => unimplemented!(),
            },
        }
    }
}

// SHARED

perftools_inline!{
/// Calculate `b` from a a representation of `b` as a float.
pub(super) fn b<F: FloatType>(f: F) -> F::ExtendedFloat {
    f.into()
}}

perftools_inline!{
/// Calculate `b+h` from a a representation of `b` as a float.
pub(super) fn bh<F: FloatType>(f: F) -> F::ExtendedFloat {
    // None of these can overflow.
    let mut b = b(f);
    let mant = (b.mant() << 1) + as_cast(1);
    let exp = b.exp() - 1;
    b.set_mant(mant);
    b.set_exp(exp);
    b
}}

perftools_inline!{
/// Generate the theoretical float type for the rounding kind.
#[allow(unused_variables)]
pub(super) fn theoretical_float<F>(f: F, kind: RoundingKind)
    -> F::ExtendedFloat
    where F: FloatType
{
    #[cfg(not(feature = "rounding"))] {
        bh(f)
    }

    #[cfg(feature = "rounding")] {
        match is_nearest(kind) {
            // We need to check if we're close to halfway, so use `b+h`.
            true  => bh(f),
            // Just care if there are any truncated digits, use `b`.
            false => b(f),
        }
    }
}}

// BIGCOMP

perftools_inline!{
/// Get the appropriate scaling factor from the digit count.
///
/// * `radix`           - Radix for the number parsing.
/// * `sci_exponent`    - Exponent of basen string in scientific notation.
pub fn scaling_factor(radix: u32, sci_exponent: u32)
    -> Bigfloat
{
    let mut factor = Bigfloat { data: arrvec![1], exp: 0 };
    factor.imul_power(radix, sci_exponent);
    factor
}}

/// Make a ratio for the numerator and denominator.
///
/// * `radix`           - Radix for the number parsing.
/// * `sci_exponent`    - Exponent of basen string in scientific notation.
/// * `f`               - Sub-halfway (`b`) float.
pub(super) fn make_ratio<F: Float>(radix: u32, sci_exponent: i32, f: F, kind: RoundingKind)
    -> (Bigfloat, Bigfloat)
    where F: FloatType
{
    let theor = theoretical_float(f, kind).to_bigfloat();
    let factor = scaling_factor(radix, sci_exponent.abs().as_u32());
    let mut num: Bigfloat;
    let mut den: Bigfloat;

    if sci_exponent < 0 {
        // Need to have the basen factor be the numerator, and the fp
        // be the denominator. Since we assumed that theor was the numerator,
        // if it's the denominator, we need to multiply it into the numerator.
        num = factor;
        num.imul_large(&theor);
        den = Bigfloat { data: arrvec![1], exp: -theor.exp };
    } else {
        num = theor;
        den = factor;
    }

    // Scale the denominator so it has the number of bits
    // in the radix as the number of leading zeros.
    let wlz = integral_binary_factor(radix).as_usize();
    let nlz = den.leading_zeros().wrapping_sub(wlz) & (<u32 as Integer>::BITS - 1);
    small::ishl_bits(den.data_mut(), nlz);
    den.exp -= nlz.as_i32();

    // Need to scale the numerator or denominator to the same value.
    // We don't want to shift the denominator, so...
    let diff = den.exp - num.exp;
    let shift = diff.abs().as_usize();
    if diff < 0 {
        // Need to shift the numerator left.
        small::ishl(num.data_mut(), shift);
        num.exp -= shift.as_i32()
    } else if diff > 0 {
        // Need to shift denominator left, go by a power of <Limb as Integer>::BITS.
        // After this, the numerator will be non-normalized, and the
        // denominator will be normalized.
        // We need to add one to the quotient,since we're calculating the
        // ceiling of the divmod.
        let (q, r) = shift.ceil_divmod(<Limb as Integer>::BITS);
        // Since we're using a power from the denominator to the
        // numerator, we to invert r, not add u32::BITS.
        let r = -r;
        small::ishl_bits(num.data_mut(), r.as_usize());
        num.exp -= r;
        if !q.is_zero() {
            den.pad_zero_digits(q);
            den.exp -= <Limb as Integer>::BITS.as_i32() * q.as_i32();
        }
    }

    (num, den)
}

// Compare digits in BigFloat with a given iterator.
macro_rules! compare_digits {
    ($iter:ident, $radix:ident, $num:ident, $den:ident) => {
        while !$num.data.is_empty() {
            let actual = match $iter.next() {
                Some(&v) => v,
                None    => return cmp::Ordering::Less,
            };
            let expected = digit_to_char($num.quorem(&$den));
            $num.imul_small($radix);
            if actual < expected {
                return cmp::Ordering::Less;
            } else if actual > expected {
                return cmp::Ordering::Greater;
            }
        }
    };
}

/// Compare digits between the generated values the ratio and the actual view.
///
/// * `integer`     - Digits from the integer component of the mantissa.
/// * `fraction`    - Digits from the fraction component of the mantissa.
/// * `radix`       - Radix for the number parsing.
/// * `num`         - Numerator for the fraction.
/// * `denm`        - Denominator for the fraction.
pub(super) fn compare_digits<'a, Iter1, Iter2>(
    integer: Iter1,
    fraction: Iter2,
    radix: u32,
    mut num: Bigfloat,
    den: Bigfloat
)
    -> cmp::Ordering
    where Iter1: Iterator<Item=&'a u8>,
          Iter2: Iterator<Item=&'a u8>
{
    // Iterate until we get a difference in the generated digits.
    // If we run out,return Equal.
    let radix = as_limb(radix);
    let mut iter = integer.chain(fraction);
    compare_digits!(iter, radix, num, den);

    // We cannot have any trailing zeros, so if there any remaining digits,
    // we're >= to the value. We've already exhausted num.data here,
    // so need to check if integer and fraction don't have data.
    let is_none = iter.next().is_none();
    match is_none {
        true  => cmp::Ordering::Equal,
        false => cmp::Ordering::Greater,
    }
}

/// Generate the correct representation from a halfway representation.
///
/// The digits iterator must not have any trailing zeros (true for
/// `SlowDataInterface`).
///
/// * `digits`          - Actual digits from the mantissa.
/// * `radix`           - Radix for the number parsing.
/// * `sci_exponent`    - Exponent of basen string in scientific notation.
/// * `f`               - Sub-halfway (`b`) float.
pub(super) fn atof<'a, F, Data>(data: Data, radix: u32, f: F, kind: RoundingKind)
    -> F
    where F: FloatType,
          Data: SlowDataInterface<'a>
{
    // This works when we're doing, like, round-even.
    let (num, den) = make_ratio(radix, data.scientific_exponent(), f, kind);
    let integer_iter = data.integer_iter();
    let fraction_iter = data.significant_fraction_iter();
    let order = compare_digits(integer_iter, fraction_iter, radix, num, den);
    round_to_native(f, order, kind)
}

// TESTS
// -----

#[cfg(test)]
mod tests {
    use crate::util::test::*;
    use super::*;

    #[test]
    fn b_test() {
        assert_eq!(b(1e-45_f32), (1, -149).into());
        assert_eq!(b(5e-324_f64), (1, -1074).into());
        assert_eq!(b(1e-323_f64), (2, -1074).into());
        assert_eq!(b(2e-323_f64), (4, -1074).into());
        assert_eq!(b(3e-323_f64), (6, -1074).into());
        assert_eq!(b(4e-323_f64), (8, -1074).into());
        assert_eq!(b(5e-323_f64), (10, -1074).into());
        assert_eq!(b(6e-323_f64), (12, -1074).into());
        assert_eq!(b(7e-323_f64), (14, -1074).into());
        assert_eq!(b(8e-323_f64), (16, -1074).into());
        assert_eq!(b(9e-323_f64), (18, -1074).into());
        assert_eq!(b(1_f32), (8388608, -23).into());
        assert_eq!(b(1_f64), (4503599627370496, -52).into());
        assert_eq!(b(1e38_f32), (9860761, 103).into());
        assert_eq!(b(1e308_f64), (5010420900022432, 971).into());
    }

    #[test]
    fn bh_test() {
        assert_eq!(bh(1e-45_f32), (3, -150).into());
        assert_eq!(bh(5e-324_f64), (3, -1075).into());
        assert_eq!(bh(1_f32), (16777217, -24).into());
        assert_eq!(bh(1_f64), (9007199254740993, -53).into());
        assert_eq!(bh(1e38_f32), (19721523, 102).into());
        assert_eq!(bh(1e308_f64), (10020841800044865, 970).into());
    }

    // SLOW PATH

    #[test]
    fn scaling_factor_test() {
        assert_eq!(scaling_factor(10, 0), Bigfloat { data: deduce_from_u32(&[1]), exp: 0 });
        assert_eq!(scaling_factor(10, 20), Bigfloat { data: deduce_from_u32(&[1977800241, 22204]), exp: 20 });
        assert_eq!(scaling_factor(10, 300), Bigfloat { data: deduce_from_u32(&[2502905297, 773182544, 1122691908, 922368819, 2799959258, 2138784391, 2365897751, 2382789932, 3061508751, 1799019667, 3501640837, 269048281, 2748691596, 1866771432, 2228563347, 475471294, 278892994, 2258936920, 3352132269, 1505791508, 2147965370, 25052104]), exp: 300 });
    }

    #[test]
    fn make_ratio_test() {
        let (num1, den1) = make_ratio(10, -324, 0f64, RoundingKind::NearestTieEven);
        let (num2, den2) = make_ratio(10, -324, 5e-324f64, RoundingKind::NearestTieEven);
        let (num3, den3) = make_ratio(10, 307, 8.98846567431158e+307f64, RoundingKind::NearestTieEven);

        #[cfg(limb_width_32)] {
            assert_eq!(num1, Bigfloat { data: arrvec![1725370368, 1252154597, 1017462556, 675087593, 2805901938, 1401824593, 1124332496, 2380663002, 1612846757, 4128923878, 1492915356, 437569744, 2975325085, 3331531962, 3367627909, 730662168, 2699172281, 1440714968, 2778340312, 690527038, 1297115354, 763425880, 1453089653, 331561842], exp: 312 });
            assert_eq!(den1, Bigfloat { data: arrvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 312 });

            assert_eq!(num2, Bigfloat { data: arrvec![881143808, 3756463792, 3052387668, 2025262779, 4122738518, 4205473780, 3372997488, 2847021710, 543572976, 3796837043, 183778774, 1312709233, 336040663, 1404661296, 1512949137, 2191986506, 3802549547, 27177609, 4040053641, 2071581115, 3891346062, 2290277640, 64301663, 994685527], exp: 312 });
            assert_eq!(den2, Bigfloat { data: arrvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 312 });

            assert_eq!(num3, Bigfloat { data: arrvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 2147483648], exp: 288 });
            assert_eq!(den3, Bigfloat { data: arrvec![1978138624, 2671552565, 2938166866, 3588566204, 1860064291, 2104472219, 2014975858, 2797301608, 462262832, 318515330, 1101517094, 1738264167, 3721375114, 414401884, 1406861075, 3053102637, 387329537, 2051556775, 1867945454, 3717689914, 1434550525, 1446648206, 238915486], exp: 288 });
        }

        #[cfg(limb_width_64)] {
            assert_eq!(num1, Bigfloat { data: arrvec![7410409304047484928, 4369968404176723173, 12051257060168107241, 4828971301551875409, 6927124077155322074, 6412022633845121254, 12778923935480989904, 14463851737583396026, 11592856673895384344, 11932880778639151320, 5571068025259989822, 6240972538554414168, 331561842], exp: 280 });
            assert_eq!(den1, Bigfloat { data: arrvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 280 });

            assert_eq!(num2, Bigfloat { data: arrvec![3784483838432903168, 13109905212530169520, 17707027106794770107, 14486913904655626228, 2334628157756414606, 789323827825812147, 1443283659023866481, 6498067065331084848, 16331825947976601418, 17351898262207902345, 16713204075779969467, 276173541953690888, 994685527], exp: 280 });
            assert_eq!(den2, Bigfloat { data: arrvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728], exp: 280 });

            assert_eq!(num3, Bigfloat { data: arrvec![0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4398046511104, 2147483648], exp: 288 });
            assert_eq!(den3, Bigfloat { data: arrvec![11474230898198052864, 15412774488649031250, 9038639357805614115, 12014318925423187826, 1368012926086910512, 7465787750175199526, 1779842542902160778, 13112975978653220627, 8811369254899559937, 15967356599166997998, 6213306735021621501, 238915486], exp: 288 });
        }
    }

    #[test]
    fn compare_digits_test() {
        // 2^-1074
        let num = Bigfloat { data: deduce_from_u32(&[1725370368, 1252154597, 1017462556, 675087593, 2805901938, 1401824593, 1124332496, 2380663002, 1612846757, 4128923878, 1492915356, 437569744, 2975325085, 3331531962, 3367627909, 730662168, 2699172281, 1440714968, 2778340312, 690527038, 1297115354, 763425880, 1453089653, 331561842]), exp: 312 };
        let den = Bigfloat { data: deduce_from_u32(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728]), exp: 312 };

        // Below halfway
        let digits = b"24703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328124999";
        let empty = b"";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Less);

        // Exactly halfway.
        let digits = b"24703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Equal);

        // Above halfway.
        let digits = b"24703282292062327208828439643411068618252990130716238221279284125033775363510437593264991818081799618989828234772285886546332835517796989819938739800539093906315035659515570226392290858392449105184435931802849936536152500319370457678249219365623669863658480757001585769269903706311928279558551332927834338409351978015531246597263579574622766465272827220056374006485499977096599470454020828166226237857393450736339007967761930577506740176324673600968951340535537458516661134223766678604162159680461914467291840300530057530849048765391711386591646239524912623653881879636239373280423891018672348497668235089863388587925628302755995657524455507255189313690836254779186948667994968324049705821028513185451396213837722826145437693412532098591327667236328125001";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Greater);

        // 2*2^-1074
        let num = Bigfloat { data: deduce_from_u32(&[881143808, 3756463792, 3052387668, 2025262779, 4122738518, 4205473780, 3372997488, 2847021710, 543572976, 3796837043, 183778774, 1312709233, 336040663, 1404661296, 1512949137, 2191986506, 3802549547, 27177609, 4040053641, 2071581115, 3891346062, 2290277640, 64301663, 994685527]), exp: 312 };
        let den = Bigfloat { data: deduce_from_u32(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 134217728]), exp: 312 };

        // Below halfway
        let digits = b"74109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984374999";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Less);

        // Exactly halfway.
        let digits = b"74109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984375";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Equal);

        // Above halfway.
        let digits = b"74109846876186981626485318930233205854758970392148714663837852375101326090531312779794975454245398856969484704316857659638998506553390969459816219401617281718945106978546710679176872575177347315553307795408549809608457500958111373034747658096871009590975442271004757307809711118935784838675653998783503015228055934046593739791790738723868299395818481660169122019456499931289798411362062484498678713572180352209017023903285791732520220528974020802906854021606612375549983402671300035812486479041385743401875520901590172592547146296175134159774938718574737870961645638908718119841271673056017045493004705269590165763776884908267986972573366521765567941072508764337560846003984904972149117463085539556354188641513168478436313080237596295773983001708984375001";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Greater);

        // 4503599627370496*2^971
        let num = Bigfloat { data: deduce_from_u32(&[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1024, 2147483648]), exp: 288 };
        let den = Bigfloat { data: deduce_from_u32(&[1978138624, 2671552565, 2938166866, 3588566204, 1860064291, 2104472219, 2014975858, 2797301608, 462262832, 318515330, 1101517094, 1738264167, 3721375114, 414401884, 1406861075, 3053102637, 387329537, 2051556775, 1867945454, 3717689914, 1434550525, 1446648206, 238915486]), exp: 288 };

        // Below halfway
        let digits = b"89884656743115805365666807213050294962762414131308158973971342756154045415486693752413698006024096935349884403114202125541629105369684531108613657287705365884742938136589844238179474556051429647415148697857438797685859063890851407391008830874765563025951597582513936655578157348020066364210154316532161708031999";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Less);

        // Exactly halfway.
        let digits = b"89884656743115805365666807213050294962762414131308158973971342756154045415486693752413698006024096935349884403114202125541629105369684531108613657287705365884742938136589844238179474556051429647415148697857438797685859063890851407391008830874765563025951597582513936655578157348020066364210154316532161708032";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Equal);

        // Above halfway.
        let digits = b"89884656743115805365666807213050294962762414131308158973971342756154045415486693752413698006024096935349884403114202125541629105369684531108613657287705365884742938136589844238179474556051429648741514697857438797685859063890851407391008830874765563025951597582513936655578157348020066364210154316532161708032001";
        assert_eq!(compare_digits(digits.iter(), empty.iter(), 10, num.clone(), den.clone()), cmp::Ordering::Greater);
    }
}