1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0

//! This module implements the functionality to restore a `JellyfishMerkleTree` from small chunks
//! of accounts.

#[cfg(test)]
mod restore_test;

use crate::{
    node_type::{
        get_child_and_sibling_half_start, Child, Children, InternalNode, LeafNode, Node, NodeKey,
    },
    NibbleExt, NodeBatch, TreeReader, TreeWriter, ROOT_NIBBLE_HEIGHT,
};
use anyhow::{bail, ensure, format_err, Result};
use diem_crypto::{
    hash::{CryptoHash, SPARSE_MERKLE_PLACEHOLDER_HASH},
    HashValue,
};
use diem_types::{
    nibble::{
        nibble_path::{NibbleIterator, NibblePath},
        Nibble,
    },
    proof::{SparseMerkleInternalNode, SparseMerkleRangeProof},
    transaction::Version,
};
use mirai_annotations::*;
use std::sync::Arc;

#[derive(Clone, Debug, Eq, PartialEq)]
enum ChildInfo<V> {
    /// This child is an internal node. The hash of the internal node is stored here if it is
    /// known, otherwise it is `None`. In the process of restoring a tree, we will only know the
    /// hash of an internal node after we see all the keys that share the same prefix.
    Internal { hash: Option<HashValue> },

    /// This child is a leaf node.
    Leaf { node: LeafNode<V> },
}

impl<V> ChildInfo<V>
where
    V: crate::Value,
{
    /// Converts `self` to a child, assuming the hash is known if it's an internal node.
    fn into_child(self, version: Version) -> Child {
        match self {
            Self::Internal { hash } => {
                Child::new(
                    hash.expect("Must have been initialized."),
                    version,
                    false, /* is_leaf */
                )
            }
            Self::Leaf { node } => {
                Child::new(node.hash(), version, true /* is_leaf */)
            }
        }
    }
}

#[derive(Clone, Debug)]
struct InternalInfo<V> {
    /// The node key of this internal node.
    node_key: NodeKey,

    /// The existing children. Every time a child appears, the corresponding position will be set
    /// to `Some`.
    children: [Option<ChildInfo<V>>; 16],
}

impl<V> InternalInfo<V>
where
    V: crate::Value,
{
    /// Creates an empty internal node with no children.
    fn new_empty(node_key: NodeKey) -> Self {
        Self {
            node_key,
            children: Default::default(),
        }
    }

    fn set_child(&mut self, index: usize, child_info: ChildInfo<V>) {
        precondition!(index < 16);
        self.children[index] = Some(child_info);
    }

    /// Converts `self` to an internal node, assuming all of its children are already known and
    /// fully initialized.
    fn into_internal_node(mut self, version: Version) -> (NodeKey, InternalNode) {
        let mut children = Children::new();

        // Calling `into_iter` on an array is equivalent to calling `iter`:
        // https://github.com/rust-lang/rust/issues/25725. So we use `iter_mut` and `take`.
        for (index, child_info_option) in self.children.iter_mut().enumerate() {
            if let Some(child_info) = child_info_option.take() {
                children.insert((index as u8).into(), child_info.into_child(version));
            }
        }

        (self.node_key, InternalNode::new(children))
    }
}

pub struct JellyfishMerkleRestore<V> {
    /// The underlying storage.
    store: Arc<dyn TreeWriter<V>>,

    /// The version of the tree we are restoring.
    version: Version,

    /// The nodes we have partially restored. Each `partial_nodes[i-1]` is the parent of
    /// `partial_nodes[i]`. If a node `partial_nodes[i-1]` has multiple children, only the
    /// rightmost known child will appear here as `partial_nodes[i]`, because any other children on
    /// the left would have been frozen.
    ///
    /// At any point in time, the structure looks like the following:
    ///
    /// ```text
    /// +----+----+----+----+----+----+----+----+
    /// |    |    |    |    |    |    |    | C  |  partial_nodes[0]
    /// +----+----+----+----+----+----+----+----+
    ///   |         |              |
    ///   |         |              |
    ///   |         |              |
    ///   v         v              v
    /// Frozen    Frozen     +----+----+----+----+----+----+----+----+
    ///                      |    |    |    | B  |    |    | A  |    |  partial_nodes[1]
    ///                      +----+----+----+----+----+----+----+----+
    ///                             |         |
    ///                             |         |
    ///                             |         |
    ///                             v         v
    ///                            Frozen    Previously inserted account
    /// ```
    ///
    /// We insert the accounts from left to right. So if the next account appears at position `A`,
    /// it will cause the leaf at position `B` to be frozen. If it appears at position `B`, it
    /// might cause a few internal nodes to be created additionally. If it appears at position `C`,
    /// it will also cause `partial_nodes[1]` to be added to `frozen_nodes` as an internal node and
    /// be removed from `partial_nodes`.
    partial_nodes: Vec<InternalInfo<V>>,

    /// The nodes that have been fully restored and are ready to be written to storage.
    frozen_nodes: NodeBatch<V>,

    /// The most recently added leaf. This is used to ensure the keys come in increasing order and
    /// do proof verification.
    previous_leaf: Option<LeafNode<V>>,

    /// The number of keys we have received since the most recent restart.
    num_keys_received: u64,

    /// When the restoration process finishes, we expect the tree to have this root hash.
    expected_root_hash: HashValue,
}

impl<V> JellyfishMerkleRestore<V>
where
    V: crate::Value,
{
    pub fn new<D: 'static + TreeReader<V> + TreeWriter<V>>(
        store: Arc<D>,
        version: Version,
        expected_root_hash: HashValue,
    ) -> Result<Self> {
        let tree_reader = Arc::clone(&store);
        let (partial_nodes, previous_leaf) =
            if let Some((node_key, leaf_node)) = tree_reader.get_rightmost_leaf()? {
                // TODO: confirm rightmost leaf is at the desired version
                // If the system crashed in the middle of the previous restoration attempt, we need
                // to recover the partial nodes to the state right before the crash.
                (
                    Self::recover_partial_nodes(tree_reader.as_ref(), version, node_key)?,
                    Some(leaf_node),
                )
            } else {
                (
                    vec![InternalInfo::new_empty(NodeKey::new_empty_path(version))],
                    None,
                )
            };

        Ok(Self {
            store,
            version,
            partial_nodes,
            frozen_nodes: NodeBatch::new(),
            previous_leaf,
            num_keys_received: 0,
            expected_root_hash,
        })
    }

    pub fn new_overwrite<D: 'static + TreeWriter<V>>(
        store: Arc<D>,
        version: Version,
        expected_root_hash: HashValue,
    ) -> Result<Self> {
        Ok(Self {
            store,
            version,
            partial_nodes: vec![InternalInfo::new_empty(NodeKey::new_empty_path(version))],
            frozen_nodes: NodeBatch::new(),
            previous_leaf: None,
            num_keys_received: 0,
            expected_root_hash,
        })
    }

    /// Recovers partial nodes from storage. We do this by looking at all the ancestors of the
    /// rightmost leaf. The ones do not exist in storage are the partial nodes.
    fn recover_partial_nodes(
        store: &dyn TreeReader<V>,
        version: Version,
        rightmost_leaf_node_key: NodeKey,
    ) -> Result<Vec<InternalInfo<V>>> {
        ensure!(
            !rightmost_leaf_node_key.nibble_path().is_empty(),
            "Root node would not be written until entire restoration process has completed \
             successfully.",
        );

        // Start from the parent of the rightmost leaf. If this internal node exists in storage, it
        // is not a partial node. Go to the parent node and repeat until we see a node that does
        // not exist. This node and all its ancestors will be the partial nodes.
        let mut node_key = rightmost_leaf_node_key.gen_parent_node_key();
        while store.get_node_option(&node_key)?.is_some() {
            node_key = node_key.gen_parent_node_key();
        }

        // Next we reconstruct all the partial nodes up to the root node, starting from the bottom.
        // For all of them, we scan all its possible child positions and see if there is one at
        // each position. If the node is not the bottom one, there is additionally a partial node
        // child at the position `previous_child_index`.
        let mut partial_nodes = vec![];
        // Initialize `previous_child_index` to `None` for the first iteration of the loop so the
        // code below treats it differently.
        let mut previous_child_index = None;

        loop {
            let mut internal_info = InternalInfo::new_empty(node_key.clone());

            for i in 0..previous_child_index.unwrap_or(16) {
                let child_node_key = node_key.gen_child_node_key(version, (i as u8).into());
                if let Some(node) = store.get_node_option(&child_node_key)? {
                    let child_info = match node {
                        Node::Internal(internal_node) => ChildInfo::Internal {
                            hash: Some(internal_node.hash()),
                        },
                        Node::Leaf(leaf_node) => ChildInfo::Leaf { node: leaf_node },
                        Node::Null => bail!("Null node should not appear in storage."),
                    };
                    internal_info.set_child(i, child_info);
                }
            }

            // If this is not the lowest partial node, it will have a partial node child at
            // `previous_child_index`. Set the hash of this child to `None` because it is a
            // partial node and we do not know its hash yet. For the lowest partial node, we just
            // find all its known children from storage in the loop above.
            if let Some(index) = previous_child_index {
                internal_info.set_child(index, ChildInfo::Internal { hash: None });
            }

            partial_nodes.push(internal_info);
            if node_key.nibble_path().is_empty() {
                break;
            }
            previous_child_index = node_key.nibble_path().last().map(|x| u8::from(x) as usize);
            node_key = node_key.gen_parent_node_key();
        }

        partial_nodes.reverse();
        Ok(partial_nodes)
    }

    /// Restores a chunk of accounts. This function will verify that the given chunk is correct
    /// using the proof and root hash, then write things to storage. If the chunk is invalid, an
    /// error will be returned and nothing will be written to storage.
    pub fn add_chunk(
        &mut self,
        chunk: Vec<(HashValue, V)>,
        proof: SparseMerkleRangeProof,
    ) -> Result<()> {
        ensure!(!chunk.is_empty(), "Should not add empty chunks.");

        for (key, value) in chunk {
            if let Some(ref prev_leaf) = self.previous_leaf {
                ensure!(
                    key > prev_leaf.account_key(),
                    "Account keys must come in increasing order.",
                )
            }
            self.add_one(key, value.clone());
            self.previous_leaf.replace(LeafNode::new(key, value));
            self.num_keys_received += 1;
        }

        // Verify what we have added so far is all correct.
        self.verify(proof)?;

        // Write the frozen nodes to storage.
        self.store.write_node_batch(&self.frozen_nodes)?;
        self.frozen_nodes.clear();

        Ok(())
    }

    /// Restores one account.
    fn add_one(&mut self, new_key: HashValue, new_value: V) {
        let nibble_path = NibblePath::new(new_key.to_vec());
        let mut nibbles = nibble_path.nibbles();

        for i in 0..ROOT_NIBBLE_HEIGHT {
            let child_index = u8::from(nibbles.next().expect("This nibble must exist.")) as usize;

            assert!(i < self.partial_nodes.len());
            match self.partial_nodes[i].children[child_index] {
                Some(ref child_info) => {
                    // If there exists an internal node at this position, we just continue the loop
                    // with the next nibble. Here we deal with the leaf case.
                    if let ChildInfo::Leaf { node } = child_info {
                        assert_eq!(
                            i,
                            self.partial_nodes.len() - 1,
                            "If we see a leaf, there will be no more partial internal nodes on \
                             lower level, since they would have been frozen.",
                        );

                        let existing_leaf = node.clone();
                        self.insert_at_leaf(
                            child_index,
                            existing_leaf,
                            new_key,
                            new_value,
                            nibbles,
                        );
                        break;
                    }
                }
                None => {
                    // This means that we are going to put a leaf in this position. For all the
                    // descendants on the left, they are now frozen.
                    self.freeze(i + 1);

                    // Mark this position as a leaf child.
                    self.partial_nodes[i].set_child(
                        child_index,
                        ChildInfo::Leaf {
                            node: LeafNode::new(new_key, new_value),
                        },
                    );

                    // We do not add this leaf node to self.frozen_nodes because we don't know its
                    // node key yet. We will know its node key when the next account comes.
                    break;
                }
            }
        }
    }

    /// Inserts a new account at the position of the existing leaf node. We may need to create
    /// multiple internal nodes depending on the length of the common prefix of the existing key
    /// and the new key.
    fn insert_at_leaf(
        &mut self,
        child_index: usize,
        existing_leaf: LeafNode<V>,
        new_key: HashValue,
        new_value: V,
        mut remaining_nibbles: NibbleIterator,
    ) {
        let num_existing_partial_nodes = self.partial_nodes.len();

        // The node at this position becomes an internal node. Since we may insert more nodes at
        // this position in the future, we do not know its hash yet.
        self.partial_nodes[num_existing_partial_nodes - 1]
            .set_child(child_index, ChildInfo::Internal { hash: None });

        // Next we build the new internal nodes from top to bottom. All these internal node except
        // the bottom one will now have a single internal node child.
        let common_prefix_len = existing_leaf
            .account_key()
            .common_prefix_nibbles_len(new_key);
        for _ in num_existing_partial_nodes..common_prefix_len {
            let visited_nibbles = remaining_nibbles.visited_nibbles().collect();
            let next_nibble = remaining_nibbles.next().expect("This nibble must exist.");
            let new_node_key = NodeKey::new(self.version, visited_nibbles);

            let mut internal_info = InternalInfo::new_empty(new_node_key);
            internal_info.set_child(
                u8::from(next_nibble) as usize,
                ChildInfo::Internal { hash: None },
            );
            self.partial_nodes.push(internal_info);
        }

        // The last internal node will have two leaf node children.
        let visited_nibbles = remaining_nibbles.visited_nibbles().collect();
        let new_node_key = NodeKey::new(self.version, visited_nibbles);
        let mut internal_info = InternalInfo::new_empty(new_node_key);

        // Next we put the existing leaf as a child of this internal node.
        let existing_child_index = existing_leaf.account_key().get_nibble(common_prefix_len);
        internal_info.set_child(
            u8::from(existing_child_index) as usize,
            ChildInfo::Leaf {
                node: existing_leaf,
            },
        );

        // Do not set the new child for now. We always call `freeze` first, then set the new child
        // later, because this way it's easier in `freeze` to find the correct leaf to freeze --
        // it's always the rightmost leaf on the lowest level.
        self.partial_nodes.push(internal_info);
        self.freeze(self.partial_nodes.len());

        // Now we set the new child.
        let new_child_index = new_key.get_nibble(common_prefix_len);
        assert!(
            new_child_index > existing_child_index,
            "New leaf must be on the right.",
        );
        self.partial_nodes
            .last_mut()
            .expect("This node must exist.")
            .set_child(
                u8::from(new_child_index) as usize,
                ChildInfo::Leaf {
                    node: LeafNode::new(new_key, new_value),
                },
            );
    }

    /// Puts the nodes that will not be changed later in `self.frozen_nodes`.
    fn freeze(&mut self, num_remaining_partial_nodes: usize) {
        self.freeze_previous_leaf();
        self.freeze_internal_nodes(num_remaining_partial_nodes);
    }

    /// Freezes the previously added leaf node. It should always be the rightmost leaf node on the
    /// lowest level, inserted in the previous `add_one` call.
    fn freeze_previous_leaf(&mut self) {
        // If this is the very first key, there is no previous leaf to freeze.
        if self.num_keys_received == 0 {
            return;
        }

        let last_node = self
            .partial_nodes
            .last()
            .expect("Must have at least one partial node.");
        let rightmost_child_index = last_node
            .children
            .iter()
            .rposition(|x| x.is_some())
            .expect("Must have at least one child.");

        match last_node.children[rightmost_child_index] {
            Some(ChildInfo::Leaf { ref node }) => {
                let child_node_key = last_node
                    .node_key
                    .gen_child_node_key(self.version, (rightmost_child_index as u8).into());
                self.frozen_nodes
                    .insert(child_node_key, node.clone().into());
            }
            _ => panic!("Must have at least one child and must not have further internal nodes."),
        }
    }

    /// Freeze extra internal nodes. Only `num_remaining_nodes` partial internal nodes will be kept
    /// and the ones on the lower level will be frozen.
    fn freeze_internal_nodes(&mut self, num_remaining_nodes: usize) {
        while self.partial_nodes.len() > num_remaining_nodes {
            let last_node = self.partial_nodes.pop().expect("This node must exist.");
            let (node_key, internal_node) = last_node.into_internal_node(self.version);
            // Keep the hash of this node before moving it into `frozen_nodes`, so we can update
            // its parent later.
            let node_hash = internal_node.hash();
            self.frozen_nodes.insert(node_key, internal_node.into());

            // Now that we have computed the hash of the internal node above, we will also update
            // its parent unless it is root node.
            if let Some(parent_node) = self.partial_nodes.last_mut() {
                // This internal node must be the rightmost child of its parent at the moment.
                let rightmost_child_index = parent_node
                    .children
                    .iter()
                    .rposition(|x| x.is_some())
                    .expect("Must have at least one child.");

                match parent_node.children[rightmost_child_index] {
                    Some(ChildInfo::Internal { ref mut hash }) => {
                        assert_eq!(hash.replace(node_hash), None);
                    }
                    _ => panic!(
                        "Must have at least one child and the rightmost child must not be a leaf."
                    ),
                }
            }
        }
    }

    /// Verifies that all accounts that have been added so far (from the leftmost one to
    /// `self.previous_leaf`) are correct, i.e., we are able to construct `self.expected_root_hash`
    /// by combining all existing accounts and `proof`.
    #[allow(clippy::collapsible_if)]
    fn verify(&self, proof: SparseMerkleRangeProof) -> Result<()> {
        let previous_leaf = self
            .previous_leaf
            .as_ref()
            .expect("The previous leaf must exist.");
        let previous_key = previous_leaf.account_key();

        // If we have all siblings on the path from root to `previous_key`, we should be able to
        // compute the root hash. The siblings on the right are already in the proof. Now we
        // compute the siblings on the left side, which represent all the accounts that have ever
        // been added.
        let mut left_siblings = vec![];

        // The following process might add some extra placeholder siblings on the left, but it is
        // nontrivial to determine when the loop should stop. So instead we just add these
        // siblings for now and get rid of them in the next step.
        let mut num_visited_right_siblings = 0;
        for (i, bit) in previous_key.iter_bits().enumerate() {
            if bit {
                // This node is a right child and there should be a sibling on the left.
                let sibling = if i >= self.partial_nodes.len() * 4 {
                    *SPARSE_MERKLE_PLACEHOLDER_HASH
                } else {
                    Self::compute_left_sibling(
                        &self.partial_nodes[i / 4],
                        previous_key.get_nibble(i / 4),
                        (3 - i % 4) as u8,
                    )
                };
                left_siblings.push(sibling);
            } else {
                // This node is a left child and there should be a sibling on the right.
                num_visited_right_siblings += 1;
            }
        }
        ensure!(
            num_visited_right_siblings >= proof.right_siblings().len(),
            "Too many right siblings in the proof.",
        );

        // Now we remove any extra placeholder siblings at the bottom. We keep removing the last
        // sibling if 1) it's a placeholder 2) it's a sibling on the left.
        for bit in previous_key.iter_bits().rev() {
            if bit {
                if *left_siblings.last().expect("This sibling must exist.")
                    == *SPARSE_MERKLE_PLACEHOLDER_HASH
                {
                    left_siblings.pop();
                } else {
                    break;
                }
            } else if num_visited_right_siblings > proof.right_siblings().len() {
                num_visited_right_siblings -= 1;
            } else {
                break;
            }
        }

        // Compute the root hash now that we have all the siblings.
        let num_siblings = left_siblings.len() + proof.right_siblings().len();
        let mut left_sibling_iter = left_siblings.iter().rev();
        let mut right_sibling_iter = proof.right_siblings().iter();
        let mut current_hash = previous_leaf.hash();
        for bit in previous_key
            .iter_bits()
            .rev()
            .skip(HashValue::LENGTH_IN_BITS - num_siblings)
        {
            let (left_hash, right_hash) = if bit {
                (
                    *left_sibling_iter
                        .next()
                        .ok_or_else(|| format_err!("Missing left sibling."))?,
                    current_hash,
                )
            } else {
                (
                    current_hash,
                    *right_sibling_iter
                        .next()
                        .ok_or_else(|| format_err!("Missing right sibling."))?,
                )
            };
            current_hash = SparseMerkleInternalNode::new(left_hash, right_hash).hash();
        }

        ensure!(
            current_hash == self.expected_root_hash,
            "Root hashes do not match. Actual root hash: {:x}. Expected root hash: {:x}.",
            current_hash,
            self.expected_root_hash,
        );

        Ok(())
    }

    /// Computes the sibling on the left for the `n`-th child.
    fn compute_left_sibling(partial_node: &InternalInfo<V>, n: Nibble, height: u8) -> HashValue {
        assert!(height < 4);
        let width = 1usize << height;
        let start = get_child_and_sibling_half_start(n, height).1 as usize;
        Self::compute_left_sibling_impl(&partial_node.children[start..start + width]).0
    }

    /// Returns the hash for given portion of the subtree and whether this part is a leaf node.
    fn compute_left_sibling_impl(children: &[Option<ChildInfo<V>>]) -> (HashValue, bool) {
        assert!(!children.is_empty());

        let num_children = children.len();
        assert!(num_children.is_power_of_two());

        if num_children == 1 {
            match &children[0] {
                Some(ChildInfo::Internal { hash }) => {
                    (*hash.as_ref().expect("The hash must be known."), false)
                }
                Some(ChildInfo::Leaf { node }) => (node.hash(), true),
                None => (*SPARSE_MERKLE_PLACEHOLDER_HASH, true),
            }
        } else {
            let (left_hash, left_is_leaf) =
                Self::compute_left_sibling_impl(&children[..num_children / 2]);
            let (right_hash, right_is_leaf) =
                Self::compute_left_sibling_impl(&children[num_children / 2..]);

            if left_hash == *SPARSE_MERKLE_PLACEHOLDER_HASH && right_is_leaf {
                (right_hash, true)
            } else if left_is_leaf && right_hash == *SPARSE_MERKLE_PLACEHOLDER_HASH {
                (left_hash, true)
            } else {
                (
                    SparseMerkleInternalNode::new(left_hash, right_hash).hash(),
                    false,
                )
            }
        }
    }

    /// Finishes the restoration process. This tells the code that there is no more account,
    /// otherwise we can not freeze the rightmost leaf and its ancestors.
    pub fn finish(mut self) -> Result<()> {
        // Deal with the special case when the entire tree has a single leaf.
        if self.partial_nodes.len() == 1 {
            let mut num_children = 0;
            let mut leaf = None;
            for i in 0..16 {
                if let Some(ref child_info) = self.partial_nodes[0].children[i] {
                    num_children += 1;
                    if let ChildInfo::Leaf { node } = child_info {
                        leaf = Some(node.clone());
                    }
                }
            }

            if num_children == 1 {
                if let Some(node) = leaf {
                    let node_key = NodeKey::new_empty_path(self.version);
                    assert!(self.frozen_nodes.is_empty());
                    self.frozen_nodes.insert(node_key, node.into());
                    self.store.write_node_batch(&self.frozen_nodes)?;
                    return Ok(());
                }
            }
        }

        self.freeze(0);
        self.store.write_node_batch(&self.frozen_nodes)
    }
}