1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
// Copyright (c) The Diem Core Contributors
// SPDX-License-Identifier: Apache-2.0
//! A transaction can have multiple operations on state. For example, it might update values
//! for a few existing keys. Imagine that we have the following tree.
//!
//! ```text
//! root0
//! / \
//! / \
//! key1 => value11 key2 => value21
//! ```
//!
//! The next transaction updates `key1`'s value to `value12` and `key2`'s value to `value22`.
//! Let's assume we update key2 first. Then the tree becomes:
//!
//! ```text
//! (on disk) (in memory)
//! root0 root1'
//! / \ / \
//! / ___ \ _____________/ \
//! / _/ \ \
//! / _/ \ \
//! / / \ \
//! key1 => value11 key2 => value21 key2 => value22
//! (on disk) (on disk) (in memory)
//! ```
//!
//! Note that
//! 1) we created a new version of the tree with `root1'` and the new `key2` node generated;
//! 2) both `root1'` and the new `key2` node are still held in memory within a batch of nodes
//! that will be written into db atomically.
//!
//! Next, we need to update `key1`'s value. This time we are dealing with the tree starting from
//! the new root. Part of the tree is in memory and the rest of it is in database. We'll update the
//! left child and the new root. We should
//! 1) create a new version for `key1` child.
//! 2) update `root1'` directly instead of making another version.
//! The resulting tree should look like:
//!
//! ```text
//! (on disk) (in memory)
//! root0 root1''
//! / \ / \
//! / \ / \
//! / \ / \
//! / \ / \
//! / \ / \
//! key1 => value11 key2 => value21 key1 => value12 key2 => value22
//! (on disk) (on disk) (in memory) (in memory)
//! ```
//!
//! This means that we need to be able to tell whether to create a new version of a node or to
//! update an existing node by deleting it and creating a new node directly. `TreeCache` provides
//! APIs to cache intermediate nodes and values in memory and simplify the actual tree
//! implementation.
//!
//! If we are dealing with a single-version tree, any complex tree operation can be seen as a
//! collection of the following operations:
//! - Put a new node.
//! - Delete a node.
//! When we apply these operations on a multi-version tree:
//! 1) Put a new node.
//! 2) When we remove a node, if the node is in the previous on-disk version, we don't need to do
//! anything. Otherwise we delete it from the tree cache.
//! Updating node could be operated as deletion of the node followed by insertion of the updated
//! node.
#[cfg(test)]
mod tree_cache_test;
use crate::{
metrics::DIEM_JELLYFISH_STORAGE_READS,
node_type::{Node, NodeKey},
NodeBatch, NodeStats, StaleNodeIndex, StaleNodeIndexBatch, TreeReader, TreeUpdateBatch,
};
use anyhow::{bail, Result};
use diem_crypto::HashValue;
use diem_types::transaction::{Version, PRE_GENESIS_VERSION};
use std::collections::{hash_map::Entry, BTreeMap, BTreeSet, HashMap, HashSet};
/// `FrozenTreeCache` is used as a field of `TreeCache` storing all the nodes and values that
/// are generated by earlier transactions so they have to be immutable. The motivation of
/// `FrozenTreeCache` is to let `TreeCache` freeze intermediate results from each transaction to
/// help commit more than one transaction in a row atomically.
struct FrozenTreeCache<V> {
/// Immutable node_cache.
node_cache: NodeBatch<V>,
/// Immutable stale_node_index_cache.
stale_node_index_cache: StaleNodeIndexBatch,
/// the stats vector including the number of new nodes, new leaves, stale nodes and stale leaves.
node_stats: Vec<NodeStats>,
/// Frozen root hashes after each earlier transaction.
root_hashes: Vec<HashValue>,
}
impl<V> FrozenTreeCache<V> {
fn new() -> Self {
Self {
node_cache: BTreeMap::new(),
stale_node_index_cache: BTreeSet::new(),
node_stats: Vec::new(),
root_hashes: Vec::new(),
}
}
}
/// `TreeCache` is a in-memory cache for per-transaction updates of sparse Merkle nodes and values.
pub struct TreeCache<'a, R, V> {
/// `NodeKey` of the current root node in cache.
root_node_key: NodeKey,
/// The version of the transaction to which the upcoming `put`s will be related.
next_version: Version,
/// Intermediate nodes keyed by node hash
node_cache: HashMap<NodeKey, Node<V>>,
/// # of leaves in the `node_cache`,
num_new_leaves: usize,
/// Partial stale log. `NodeKey` to identify the stale record.
stale_node_index_cache: HashSet<NodeKey>,
/// # of leaves in the `stale_node_index_cache`,
num_stale_leaves: usize,
/// The immutable part of this cache, which will be committed to the underlying storage.
frozen_cache: FrozenTreeCache<V>,
/// The underlying persistent storage.
reader: &'a R,
}
impl<'a, R, V> TreeCache<'a, R, V>
where
R: 'a + TreeReader<V>,
V: crate::Value,
{
/// Constructs a new `TreeCache` instance.
pub fn new(reader: &'a R, next_version: Version) -> Result<Self> {
let mut node_cache = HashMap::new();
let root_node_key = if next_version == 0 {
let pre_genesis_root_key = NodeKey::new_empty_path(PRE_GENESIS_VERSION);
let pre_genesis_root = reader.get_node_option(&pre_genesis_root_key)?;
match pre_genesis_root {
Some(_) => {
// This is to support the extreme case where things really went wild,
// and we need to ditch the transaction history and apply a new
// genesis on top of an existing state db.
pre_genesis_root_key
}
None => {
// Hack: We need to start from an empty tree, so we insert
// a null node beforehand deliberately to deal with this corner case.
let genesis_root_key = NodeKey::new_empty_path(0);
node_cache.insert(genesis_root_key.clone(), Node::new_null());
genesis_root_key
}
}
} else {
NodeKey::new_empty_path(next_version - 1)
};
Ok(Self {
node_cache,
stale_node_index_cache: HashSet::new(),
frozen_cache: FrozenTreeCache::new(),
root_node_key,
next_version,
reader,
num_stale_leaves: 0,
num_new_leaves: 0,
})
}
/// Gets a node with given node key. If it doesn't exist in node cache, read from `reader`.
pub fn get_node(&self, node_key: &NodeKey) -> Result<Node<V>> {
Ok(if let Some(node) = self.node_cache.get(node_key) {
node.clone()
} else if let Some(node) = self.frozen_cache.node_cache.get(node_key) {
node.clone()
} else {
DIEM_JELLYFISH_STORAGE_READS.inc();
self.reader.get_node(node_key)?
})
}
/// Gets the current root node key.
pub fn get_root_node_key(&self) -> &NodeKey {
&self.root_node_key
}
/// Set roots `node_key`.
pub fn set_root_node_key(&mut self, root_node_key: NodeKey) {
self.root_node_key = root_node_key;
}
/// Puts the node with given hash as key into node_cache.
pub fn put_node(&mut self, node_key: NodeKey, new_node: Node<V>) -> Result<()> {
match self.node_cache.entry(node_key) {
Entry::Vacant(o) => {
if new_node.is_leaf() {
self.num_new_leaves += 1
}
o.insert(new_node);
}
Entry::Occupied(o) => bail!("Node with key {:?} already exists in NodeBatch", o.key()),
};
Ok(())
}
/// Deletes a node with given hash.
pub fn delete_node(&mut self, old_node_key: &NodeKey, is_leaf: bool) {
// If node cache doesn't have this node, it means the node is in the previous version of
// the tree on the disk.
if self.node_cache.remove(old_node_key).is_none() {
let is_new_entry = self.stale_node_index_cache.insert(old_node_key.clone());
assert!(is_new_entry, "Node gets stale twice unexpectedly.");
if is_leaf {
self.num_stale_leaves += 1;
}
} else if is_leaf {
self.num_new_leaves -= 1;
}
}
/// Freezes all the contents in cache to be immutable and clear `node_cache`.
pub fn freeze(&mut self) {
let root_node_key = self.get_root_node_key();
let root_hash = self
.get_node(root_node_key)
.unwrap_or_else(|_| unreachable!("Root node with key {:?} must exist", root_node_key))
.hash();
self.frozen_cache.root_hashes.push(root_hash);
let node_stats = NodeStats {
new_nodes: self.node_cache.len(),
new_leaves: self.num_new_leaves,
stale_nodes: self.stale_node_index_cache.len(),
stale_leaves: self.num_stale_leaves,
};
self.frozen_cache.node_stats.push(node_stats);
self.frozen_cache.node_cache.extend(self.node_cache.drain());
let stale_since_version = self.next_version;
self.frozen_cache
.stale_node_index_cache
.extend(
self.stale_node_index_cache
.drain()
.map(|node_key| StaleNodeIndex {
stale_since_version,
node_key,
}),
);
// Clean up
self.num_stale_leaves = 0;
self.num_new_leaves = 0;
// Prepare for the next version after freezing
self.next_version += 1;
}
}
impl<'a, R, V> From<TreeCache<'a, R, V>> for (Vec<HashValue>, TreeUpdateBatch<V>)
where
R: 'a + TreeReader<V>,
{
fn from(tree_cache: TreeCache<'a, R, V>) -> Self {
(
tree_cache.frozen_cache.root_hashes,
TreeUpdateBatch {
node_batch: tree_cache.frozen_cache.node_cache,
stale_node_index_batch: tree_cache.frozen_cache.stale_node_index_cache,
node_stats: tree_cache.frozen_cache.node_stats,
},
)
}
}